goodnight

This commit is contained in:
0nhc
2024-10-20 17:20:09 -05:00
parent 37591fcaa8
commit c8f0354550
3 changed files with 40 additions and 22 deletions

View File

@@ -11,6 +11,7 @@ import torch.nn.functional as F
import requests
import matplotlib.pyplot as plt
from vgn.grasp import ParallelJawGrasp
import time
class RealTime3DVisualizer:
@@ -239,37 +240,48 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
self.updated = True
print("Found an NBV!")
return
# Policy has produced an available nbv and moved to that camera pose
if(self.updated == True):
# Visualize the new camera pose
# Request grasping poses from GSNet
self.target_points, self.scene_points = self.depth_image_to_ap_input(img, seg, target_id)
target_points_list = np.asarray(self.target_points.cpu().numpy())[0].tolist()
central_point_of_target = np.mean(target_points_list, axis=0)
scene_points_list = np.asarray(self.scene_points.cpu().numpy())[0].tolist()
merged_points_list = target_points_list + scene_points_list
gsnet_grasping_poses = np.asarray(self.request_grasping_pose(merged_points_list))
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
# gsnet_input_points = self.crop_pts_sphere(np.asarray(merged_points_list), central_point_of_target)
gsnet_input_points = target_points_list
gsnet_grasping_poses = np.asarray(self.request_grasping_pose(gsnet_input_points))
# Convert all grasping poses' reference frame to arm frame
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
for gg in gsnet_grasping_poses:
T = np.asarray(gg['T'])
gg['T'] = current_cam_pose.cpu().numpy() @ T
# Convert grasping poses to grasp objects
# Convert grasping poses to ParallelJawGrasp objects
grasps = []
qualities = []
for gg in gsnet_grasping_poses:
T = Transform.from_matrix(np.asarray(gg['T']))
width = 0.1
width = 0.075
grasp = ParallelJawGrasp(T, width)
grasps.append(grasp)
qualities.append(gg['score'])
# Visualize grasps
self.vis.grasps(self.base_frame, grasps, qualities)
time.sleep(1000000)
# Filter grasps
filtered_grasps = []
filtered_qualities = []
for grasp, quality in zip(grasps, qualities):
pose = grasp.pose
tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
if self.bbox.is_inside(tip):
grasp.pose = pose
# tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
tip = pose.translation
# if self.bbox.is_inside(tip):
if(True):
q_grasp = self.solve_ee_ik(q, pose * self.T_grasp_ee)
if q_grasp is not None:
filtered_grasps.append(grasp)
@@ -281,7 +293,11 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
self.best_grasp = None
self.vis.clear_grasp()
self.done = True
def crop_pts_sphere(self, points, crop_center, radius=0.2):
crop_mask = np.linalg.norm(points - crop_center, axis=1) < radius
return points[crop_mask].tolist()
def deactivate(self):
self.vis.clear_ig_views()
self.updated = False