interfaced with gsnet
This commit is contained in:
parent
4b696a93d3
commit
ca9b6733f0
@ -1,5 +1,4 @@
|
||||
# Roadmap
|
||||
* Change simulation scenes
|
||||
* Interface with GS-Net
|
||||
|
||||
# Updated installation steps fo my PC environment
|
||||
|
@ -2,7 +2,7 @@ bt_sim:
|
||||
gui: True
|
||||
gripper_force: 10
|
||||
# scene: random
|
||||
scene: $(find active_grasp)/cfg/sim/challenging_scene_1.yaml
|
||||
scene: $(find active_grasp)/cfg/sim/challenging_scene_2.yaml
|
||||
|
||||
hw:
|
||||
roi_calib_file: $(find active_grasp)/cfg/hw/T_base_tag.txt
|
||||
|
@ -2,10 +2,10 @@ center: [0.5, 0.0, 0.25]
|
||||
q: [0.0, -1.39, 0.0, -2.36, 0.0, 1.57, 0.79]
|
||||
objects:
|
||||
- object_id: ycb/006_mustard_bottle
|
||||
xyz: [0.0, 0.0, 1.6]
|
||||
xyz: [0.0, 0.0, 0.03]
|
||||
rpy: [0, 0, 0]
|
||||
scale: 0.8
|
||||
- object_id: active_perception/box2
|
||||
xyz: [0.0, 0.0, 1.3]
|
||||
- object_id: active_perception/box
|
||||
xyz: [0.0, 0.0, 0.0]
|
||||
rpy: [0, 0, 0]
|
||||
scale: 0.85
|
||||
scale: 0.8
|
||||
|
11
cfg/sim/challenging_scene_2.yaml
Normal file
11
cfg/sim/challenging_scene_2.yaml
Normal file
@ -0,0 +1,11 @@
|
||||
center: [0.5, 0.0, 0.25]
|
||||
q: [0.0, -1.39, 0.0, -2.36, 0.0, 1.57, 0.79]
|
||||
objects:
|
||||
- object_id: ycb/006_mustard_bottle
|
||||
xyz: [0.0, 0.0, 0.03]
|
||||
rpy: [0, 0, 0]
|
||||
scale: 0.8
|
||||
- object_id: active_perception/box2
|
||||
xyz: [0.19, 0.0, 0.0]
|
||||
rpy: [0, 0, 0]
|
||||
scale: 1.2
|
@ -8,5 +8,5 @@ register("top-view", TopView)
|
||||
register("top-trajectory", TopTrajectory)
|
||||
register("fixed-trajectory", FixedTrajectory)
|
||||
register("nbv", NextBestView)
|
||||
register("ap-multi-view", ActivePerceptionMultiViewPolicy)
|
||||
# register("ap-multi-view", ActivePerceptionMultiViewPolicy)
|
||||
register("ap-single-view", ActivePerceptionSingleViewPolicy)
|
@ -8,9 +8,9 @@ from .active_perception_demo import APInferenceEngine
|
||||
from robot_helpers.spatial import Transform
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
import requests
|
||||
import matplotlib.pyplot as plt
|
||||
from vgn.grasp import ParallelJawGrasp
|
||||
|
||||
|
||||
class RealTime3DVisualizer:
|
||||
@ -51,146 +51,152 @@ class RealTime3DVisualizer:
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
class ActivePerceptionMultiViewPolicy(MultiViewPolicy):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.max_views = rospy.get_param("ap_grasp/max_views")
|
||||
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
||||
self.max_inference_num = rospy.get_param("ap_grasp/max_inference_num")
|
||||
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
||||
self.pcdvis = RealTime3DVisualizer()
|
||||
# class ActivePerceptionMultiViewPolicy(MultiViewPolicy):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.max_views = rospy.get_param("ap_grasp/max_views")
|
||||
# self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
||||
# self.max_inference_num = rospy.get_param("ap_grasp/max_inference_num")
|
||||
# self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
||||
# self.pcdvis = RealTime3DVisualizer()
|
||||
|
||||
|
||||
def update(self, img, seg, target_id, x, q):
|
||||
if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
|
||||
self.done = True
|
||||
else:
|
||||
with Timer("state_update"):
|
||||
self.integrate(img, x, q)
|
||||
# def update(self, img, seg, target_id, x, q):
|
||||
# if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
|
||||
# self.done = True
|
||||
# else:
|
||||
# with Timer("state_update"):
|
||||
# self.integrate(img, x, q)
|
||||
|
||||
# When policy hasn't produced an available grasp
|
||||
c = 0
|
||||
while(c < self.max_inference_num):
|
||||
# Inference with our model
|
||||
target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
||||
ap_input = {'target_pts': target_points,
|
||||
'scene_pts': scene_points}
|
||||
ap_output = self.ap_inference_engine.inference(ap_input)
|
||||
c += 1
|
||||
delta_rot_6d = ap_output['estimated_delta_rot_6d']
|
||||
# # When policy hasn't produced an available grasp
|
||||
# c = 0
|
||||
# while(c < self.max_inference_num):
|
||||
# # Inference with our model
|
||||
# target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
||||
# ap_input = {'target_pts': target_points,
|
||||
# 'scene_pts': scene_points}
|
||||
# ap_output = self.ap_inference_engine.inference(ap_input)
|
||||
# c += 1
|
||||
# delta_rot_6d = ap_output['estimated_delta_rot_6d']
|
||||
|
||||
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
||||
est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
|
||||
look_at_center = torch.from_numpy(self.bbox.center).float().to("cuda:0")
|
||||
nbv_tensor = self.get_transformed_mat(current_cam_pose,
|
||||
est_delta_rot_mat,
|
||||
look_at_center)
|
||||
nbv_numpy = nbv_tensor.cpu().numpy()
|
||||
nbv_transform = Transform.from_matrix(nbv_numpy)
|
||||
x_d = nbv_transform
|
||||
# current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
||||
# est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
|
||||
# look_at_center = torch.from_numpy(self.bbox.center).float().to("cuda:0")
|
||||
# nbv_tensor = self.get_transformed_mat(current_cam_pose,
|
||||
# est_delta_rot_mat,
|
||||
# look_at_center)
|
||||
# nbv_numpy = nbv_tensor.cpu().numpy()
|
||||
# nbv_transform = Transform.from_matrix(nbv_numpy)
|
||||
# x_d = nbv_transform
|
||||
|
||||
# Check if this pose available
|
||||
if(self.solve_cam_ik(self.q0, x_d)):
|
||||
self.x_d = x_d
|
||||
self.updated = True
|
||||
print("Found an NBV!")
|
||||
break
|
||||
# # Check if this pose available
|
||||
# if(self.solve_cam_ik(self.q0, x_d)):
|
||||
# self.x_d = x_d
|
||||
# self.updated = True
|
||||
# print("Found an NBV!")
|
||||
# break
|
||||
|
||||
|
||||
def vis_cam_pose(self, x):
|
||||
# Integrate
|
||||
self.views.append(x)
|
||||
self.vis.path(self.base_frame, self.intrinsic, self.views)
|
||||
# def vis_cam_pose(self, x):
|
||||
# # Integrate
|
||||
# self.views.append(x)
|
||||
# self.vis.path(self.base_frame, self.intrinsic, self.views)
|
||||
|
||||
def vis_scene_cloud(self, img, x):
|
||||
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
||||
scene_cloud = self.tsdf.get_scene_cloud()
|
||||
self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
|
||||
# def vis_scene_cloud(self, img, x):
|
||||
# self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
||||
# scene_cloud = self.tsdf.get_scene_cloud()
|
||||
# self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
|
||||
|
||||
def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
|
||||
a1, a2 = d6[..., :3], d6[..., 3:]
|
||||
b1 = F.normalize(a1, dim=-1)
|
||||
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
||||
b2 = F.normalize(b2, dim=-1)
|
||||
b3 = torch.cross(b1, b2, dim=-1)
|
||||
return torch.stack((b1, b2, b3), dim=-2)
|
||||
# def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
|
||||
# a1, a2 = d6[..., :3], d6[..., 3:]
|
||||
# b1 = F.normalize(a1, dim=-1)
|
||||
# b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
||||
# b2 = F.normalize(b2, dim=-1)
|
||||
# b3 = torch.cross(b1, b2, dim=-1)
|
||||
# return torch.stack((b1, b2, b3), dim=-2)
|
||||
|
||||
|
||||
def get_transformed_mat(self, src_mat, delta_rot, target_center_w):
|
||||
src_rot = src_mat[:3, :3]
|
||||
dst_rot = src_rot @ delta_rot.T
|
||||
dst_mat = torch.eye(4).to(dst_rot.device)
|
||||
dst_mat[:3, :3] = dst_rot
|
||||
distance = torch.norm(target_center_w - src_mat[:3, 3])
|
||||
z_axis_camera = dst_rot[:3, 2].reshape(-1)
|
||||
new_camera_position_w = target_center_w - distance * z_axis_camera
|
||||
dst_mat[:3, 3] = new_camera_position_w
|
||||
return dst_mat
|
||||
# def get_transformed_mat(self, src_mat, delta_rot, target_center_w):
|
||||
# src_rot = src_mat[:3, :3]
|
||||
# dst_rot = src_rot @ delta_rot.T
|
||||
# dst_mat = torch.eye(4).to(dst_rot.device)
|
||||
# dst_mat[:3, :3] = dst_rot
|
||||
# distance = torch.norm(target_center_w - src_mat[:3, 3])
|
||||
# z_axis_camera = dst_rot[:3, 2].reshape(-1)
|
||||
# new_camera_position_w = target_center_w - distance * z_axis_camera
|
||||
# dst_mat[:3, 3] = new_camera_position_w
|
||||
# return dst_mat
|
||||
|
||||
def depth_image_to_ap_input(self, depth_img, seg_img, target_id):
|
||||
target_points = []
|
||||
scene_points = []
|
||||
# def depth_image_to_ap_input(self, depth_img, seg_img, target_id):
|
||||
# target_points = []
|
||||
# scene_points = []
|
||||
|
||||
K = self.intrinsic.K
|
||||
depth_shape = depth_img.shape
|
||||
seg_shape = seg_img.shape
|
||||
if(depth_shape == seg_shape):
|
||||
img_shape = depth_shape
|
||||
else:
|
||||
print("Depth image shape and segmentation image shape are not the same")
|
||||
return None
|
||||
# K = self.intrinsic.K
|
||||
# depth_shape = depth_img.shape
|
||||
# seg_shape = seg_img.shape
|
||||
# if(depth_shape == seg_shape):
|
||||
# img_shape = depth_shape
|
||||
# else:
|
||||
# print("Depth image shape and segmentation image shape are not the same")
|
||||
# return None
|
||||
|
||||
# Convert depth image to 3D points
|
||||
u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0]))
|
||||
x_factors = (u_indices - K[0, 2]) / K[0, 0]
|
||||
y_factors = (v_indices - K[1, 2]) / K[1, 1]
|
||||
z_mat = depth_img
|
||||
x_mat = x_factors * z_mat
|
||||
y_mat = y_factors * z_mat
|
||||
for i in range(img_shape[0]):
|
||||
for j in range(img_shape[1]):
|
||||
seg_id = seg_img[i, j]
|
||||
x = x_mat[i][j]
|
||||
y = y_mat[i][j]
|
||||
z = z_mat[i][j]
|
||||
if(int(seg_id) == int(target_id)):
|
||||
# This pixel belongs to the target object to be grasped
|
||||
target_points.append([x,y,z])
|
||||
else:
|
||||
# This pixel belongs to the scene
|
||||
scene_points.append([x,y,z])
|
||||
# # Convert depth image to 3D points
|
||||
# u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0]))
|
||||
# x_factors = (u_indices - K[0, 2]) / K[0, 0]
|
||||
# y_factors = (v_indices - K[1, 2]) / K[1, 1]
|
||||
# z_mat = depth_img
|
||||
# x_mat = x_factors * z_mat
|
||||
# y_mat = y_factors * z_mat
|
||||
# for i in range(img_shape[0]):
|
||||
# for j in range(img_shape[1]):
|
||||
# seg_id = seg_img[i, j]
|
||||
# x = x_mat[i][j]
|
||||
# y = y_mat[i][j]
|
||||
# z = z_mat[i][j]
|
||||
# if(int(seg_id) == int(target_id)):
|
||||
# # This pixel belongs to the target object to be grasped
|
||||
# target_points.append([x,y,z])
|
||||
# else:
|
||||
# # This pixel belongs to the scene
|
||||
# scene_points.append([x,y,z])
|
||||
|
||||
target_points = np.asarray(target_points)
|
||||
target_points = target_points.reshape(1, target_points.shape[0], 3)
|
||||
# self.pcdvis.update_points(target_points)
|
||||
target_points = torch.from_numpy(target_points).float().to("cuda:0")
|
||||
scene_points = np.asarray(scene_points)
|
||||
scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
|
||||
scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
|
||||
# target_points = np.asarray(target_points)
|
||||
# target_points = target_points.reshape(1, target_points.shape[0], 3)
|
||||
# # self.pcdvis.update_points(target_points)
|
||||
# target_points = torch.from_numpy(target_points).float().to("cuda:0")
|
||||
# scene_points = np.asarray(scene_points)
|
||||
# scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
|
||||
# scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
|
||||
|
||||
return target_points, scene_points
|
||||
# return target_points, scene_points
|
||||
|
||||
|
||||
def best_grasp_prediction_is_stable(self):
|
||||
if self.best_grasp:
|
||||
t = (self.T_task_base * self.best_grasp.pose).translation
|
||||
i, j, k = (t / self.tsdf.voxel_size).astype(int)
|
||||
qs = self.qual_hist[:, i, j, k]
|
||||
if np.count_nonzero(qs) == self.T and np.mean(qs) > 0.9:
|
||||
return True
|
||||
return False
|
||||
# def best_grasp_prediction_is_stable(self):
|
||||
# if self.best_grasp:
|
||||
# t = (self.T_task_base * self.best_grasp.pose).translation
|
||||
# i, j, k = (t / self.tsdf.voxel_size).astype(int)
|
||||
# qs = self.qual_hist[:, i, j, k]
|
||||
# if np.count_nonzero(qs) == self.T and np.mean(qs) > 0.9:
|
||||
# return True
|
||||
# return False
|
||||
|
||||
|
||||
class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
||||
def __init__(self):
|
||||
def __init__(self, flask_base_url="http://127.0.0.1:5000"):
|
||||
super().__init__()
|
||||
self.max_views = rospy.get_param("ap_grasp/max_views")
|
||||
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
||||
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
||||
self.pcdvis = RealTime3DVisualizer()
|
||||
self.updated = False
|
||||
self._base_url = flask_base_url
|
||||
|
||||
|
||||
def request_grasping_pose(self, data):
|
||||
response = requests.post(f"{self._base_url}/get_gsnet_grasp", json=data)
|
||||
return response.json()
|
||||
|
||||
|
||||
def update(self, img, seg, target_id, x, q):
|
||||
# Visualize scene cloud
|
||||
self.vis_scene_cloud(img, x)
|
||||
@ -201,8 +207,8 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
||||
# When policy hasn't produced an available grasp
|
||||
while(self.updated == False):
|
||||
# Inference with our model
|
||||
target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
||||
ap_input = {'target_pts': target_points,
|
||||
self.target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
||||
ap_input = {'target_pts': self.target_points,
|
||||
'scene_pts': scene_points}
|
||||
ap_output = self.ap_inference_engine.inference(ap_input)
|
||||
delta_rot_6d = ap_output['estimated_delta_rot_6d']
|
||||
@ -210,7 +216,7 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
||||
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
||||
est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
|
||||
|
||||
target_points_np = target_points.cpu().numpy()[0,:,:]
|
||||
target_points_np = self.target_points.cpu().numpy()[0,:,:]
|
||||
central_point_of_target = np.mean(target_points_np, axis=0)
|
||||
look_at_center = torch.from_numpy(central_point_of_target).float().to("cuda:0")
|
||||
# Convert look_at_center's reference frame to arm frame
|
||||
@ -234,9 +240,18 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
||||
self.updated = True
|
||||
print("Found an NBV!")
|
||||
return
|
||||
# Policy has produced an available grasp
|
||||
# Policy has produced an available nbv
|
||||
if(self.updated == True):
|
||||
self.generate_grasp(q)
|
||||
data = np.asarray(self.target_points.cpu().numpy())[0].tolist()
|
||||
best_grasp_T = np.asarray(self.request_grasping_pose(data))
|
||||
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
||||
best_grasp_T = current_cam_pose.cpu().numpy() @ best_grasp_T
|
||||
pose = Transform.from_matrix(best_grasp_T)
|
||||
width = 0.1
|
||||
grasp = ParallelJawGrasp(pose, width)
|
||||
self.best_grasp = grasp
|
||||
self.vis.grasp(self.base_frame, self.best_grasp, 0.9)
|
||||
# self.generate_grasp(q)
|
||||
self.done = True
|
||||
|
||||
def deactivate(self):
|
||||
@ -253,6 +268,19 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
||||
scene_cloud = self.tsdf.get_scene_cloud()
|
||||
self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
|
||||
|
||||
def generate_gsnet_grasp(self, q):
|
||||
tsdf_grid = self.tsdf.get_grid()
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
self.vis.quality(self.task_frame, self.tsdf.voxel_size, out.qual, 0.9)
|
||||
grasps, qualities = self.filter_grasps(out, q)
|
||||
|
||||
if len(grasps) > 0:
|
||||
self.best_grasp, quality = self.select_best_grasp(grasps, qualities)
|
||||
self.vis.grasp(self.base_frame, self.best_grasp, quality)
|
||||
else:
|
||||
self.best_grasp = None
|
||||
self.vis.clear_grasp()
|
||||
|
||||
def generate_grasp(self, q):
|
||||
tsdf_grid = self.tsdf.get_grid()
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
|
@ -107,7 +107,7 @@ class GraspController:
|
||||
self.view_sphere = ViewHalfSphere(bbox, self.min_z_dist)
|
||||
self.policy.activate(bbox, self.view_sphere)
|
||||
timer = rospy.Timer(rospy.Duration(1.0 / self.control_rate), self.send_vel_cmd)
|
||||
r = rospy.Rate(self.policy_rate)
|
||||
r = rospy.Rate(self.control_rate)
|
||||
|
||||
if(self.policy.policy_type=="single_view"):
|
||||
while not self.policy.done:
|
||||
@ -127,6 +127,9 @@ class GraspController:
|
||||
# Arrived
|
||||
moving_to_The_target = False
|
||||
r.sleep()
|
||||
# sleep 3s
|
||||
for i in range(self.control_rate*3):
|
||||
r.sleep()
|
||||
elif(self.policy.policy_type=="multi_view"):
|
||||
while not self.policy.done:
|
||||
depth_img, seg_image, pose, q = self.get_state()
|
||||
|
Loading…
x
Reference in New Issue
Block a user