add pointcloud memory feature for gsnet input

This commit is contained in:
0nhc 2024-11-03 02:54:33 -06:00
parent 28bfe0e552
commit e1a23cdde6
8 changed files with 15157 additions and 1177 deletions

View File

@ -256,7 +256,9 @@ Visualization Manager:
Name: Markers
Namespaces:
bbox: true
grasp: true
path: true
roi: true
views: true
Queue Size: 100
Value: true
@ -272,7 +274,7 @@ Visualization Manager:
Color: 255; 255; 255
Color Transformer: Intensity
Decay Time: 0
Enabled: true
Enabled: false
Invert Rainbow: false
Max Color: 255; 255; 255
Min Color: 0; 0; 0
@ -287,7 +289,7 @@ Visualization Manager:
Unreliable: false
Use Fixed Frame: true
Use rainbow: true
Value: true
Value: false
- Alpha: 0.20000000298023224
Autocompute Intensity Bounds: false
Autocompute Value Bounds:
@ -424,7 +426,7 @@ Visualization Manager:
Views:
Current:
Class: rviz/Orbit
Distance: 2.0648767948150635
Distance: 1.2382971048355103
Enable Stereo Rendering:
Stereo Eye Separation: 0.05999999865889549
Stereo Focal Distance: 1
@ -432,17 +434,17 @@ Visualization Manager:
Value: false
Field of View: 0.7853981852531433
Focal Point:
X: -0.054327137768268585
Y: -0.14501728117465973
Z: 0.2944410443305969
X: 0.27311334013938904
Y: -0.15430450439453125
Z: 0.29310858249664307
Focal Shape Fixed Size: false
Focal Shape Size: 0.05000000074505806
Invert Z Axis: false
Name: Current View
Near Clip Distance: 0.009999999776482582
Pitch: 0.3053985834121704
Pitch: 0.4653984010219574
Target Frame: <Fixed Frame>
Yaw: 0.7053982615470886
Yaw: 1.5403975248336792
Saved:
- Class: rviz/Orbit
Distance: 1.2000000476837158
@ -483,4 +485,4 @@ Window Geometry:
collapsed: true
Width: 1095
X: 1273
Y: 127
Y: 90

View File

@ -1,9 +1,9 @@
bt_sim:
gui: True
gripper_force: 10
gripper_force: 100
# scene: random
# scene: manual
scene: $(find active_grasp)/cfg/sim/challenging_scene_6.yaml
scene: $(find active_grasp)/cfg/sim/challenging_scene_1.yaml
hw:
roi_calib_file: $(find active_grasp)/cfg/hw/T_base_tag.txt
@ -43,3 +43,8 @@ ap_grasp:
max_views: 80
ap_config_path: $(find active_grasp)/src/active_grasp/active_perception/configs/local_inference_config.yaml
max_inference_num: 50
crop_min_radius: 0.2
crop_radius_step: 0.05
crop_max_radius: 0.5
num_knn_neighbours: 5

View File

@ -2,10 +2,10 @@ center: [0.5, 0.0, 0.25]
q: [0.0, -1.39, 0.0, -2.36, 0.0, 1.57, 0.79]
objects:
- object_id: ycb/006_mustard_bottle
xyz: [0.0, 0.0, 0.03]
xyz: [0.1, 0.0, 0.03]
rpy: [0, 0, 0]
scale: 0.8
- object_id: active_perception/box
xyz: [0.0, 0.0, 0.0]
xyz: [0.1, 0.0, 0.0]
rpy: [0, 0, 0]
scale: 0.8
scale: 0.9

View File

@ -6,6 +6,6 @@ objects:
rpy: [0, 0, -45]
scale: 0.5
- object_id: active_perception/cabinet2
xyz: [0.1, 0.0, 0.0]
rpy: [0, 0, 45]
xyz: [0.0, 0.0, 0.0]
rpy: [0, 0, 135]
scale: 0.25

File diff suppressed because it is too large Load Diff

View File

@ -15,6 +15,7 @@ import time
from visualization_msgs.msg import Marker, MarkerArray
from geometry_msgs.msg import Pose
import tf
from robot_helpers.ros import tf as rhtf
from sklearn.neighbors import NearestNeighbors
import sensor_msgs.point_cloud2 as pc2
@ -197,6 +198,10 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
super().__init__()
self.max_views = rospy.get_param("ap_grasp/max_views")
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
self.crop_min_radius = rospy.get_param("ap_grasp/crop_min_radius")
self.crop_radius_step = rospy.get_param("ap_grasp/crop_radius_step")
self.crop_max_radius = rospy.get_param("ap_grasp/crop_max_radius")
self.num_knn_neighbours = rospy.get_param("ap_grasp/num_knn_neighbours")
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
self.pcdvis = RealTime3DVisualizer()
self.updated = False
@ -218,7 +223,6 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
# Visualize Initial Camera Pose
self.vis_cam_pose(x)
self.publish_pointcloud([[0,0,0]])
# When policy hasn't produced an available grasp
while(self.updated == False):
@ -226,16 +230,20 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
self.publish_pointcloud([[0,0,0]])
# Inference with our model
self.target_points, self.scene_points = self.depth_image_to_ap_input(img, seg, target_id, support_id,
self.target_points, self.scene_points, _ = self.depth_image_to_ap_input(img,
seg,
target_id,
support_id,
scene_sample_num=16384,
target_sample_num=1024)
ap_input = {'target_pts': self.target_points,
'scene_pts': self.scene_points}
# save point cloud
# target_points = self.target_points.cpu().numpy()[0,:,:]
scene_points = self.scene_points.cpu().numpy()[0,:,:]
self.scene_points_cache = self.scene_points.cpu().numpy()[0]
self.cam_pose_cache = rhtf.lookup(self.base_frame, self.cam_frame, rospy.Time.now()).as_matrix()
self.publish_pointcloud(scene_points)
self.publish_pointcloud(self.scene_points_cache)
# time.sleep(10000000)
# np.savetxt("target_points.txt", target_points, delimiter=",")
@ -274,18 +282,72 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
# Policy has produced an available nbv and moved to that camera pose
if(self.updated == True):
# Request grasping poses from GSNet
self.target_points, self.scene_points = self.depth_image_to_ap_input(img, seg, target_id, support_id)
self.target_points, self.scene_points, self.all_points = \
self.depth_image_to_ap_input(img, seg, target_id, support_id)
target_points_list = np.asarray(self.target_points.cpu().numpy())[0].tolist()
central_point_of_target = np.mean(target_points_list, axis=0)
target_points_radius = np.max(np.linalg.norm(target_points_list - central_point_of_target, axis=1))
scene_points_list = np.asarray(self.scene_points.cpu().numpy())[0].tolist()
merged_points_list = target_points_list + scene_points_list
gsnet_input_points = self.crop_pts_sphere(np.asarray(merged_points_list),
# Crop points to desired number of points
num_points_valid = False
target_points_radius = self.crop_min_radius
required_num_points = 15000
# Merge all points and scene points
self.all_points = np.asarray(self.all_points.cpu().numpy())[0]
all_points_list = self.all_points.tolist()
scene_points_list = self.scene_points_cache.tolist()
# convert scene_points to current frame
self.cam_pose = rhtf.lookup(self.base_frame, self.cam_frame, rospy.Time.now()).as_matrix()
for idx, point in enumerate(scene_points_list):
point = np.asarray(point)
T_point_cam_old = np.array([[1, 0, 0, point[0]],
[0, 1, 0, point[1]],
[0, 0, 1, point[2]],
[0, 0, 0, 1]])
# point in arm frame
T_point_arm = np.matmul(self.cam_pose_cache, T_point_cam_old)
# point in camera frame
T_point_cam_new = np.matmul(np.linalg.inv(self.cam_pose),
T_point_arm)
point = T_point_cam_new[:3, 3].T
point = point.tolist()
scene_points_list[idx] = point
merged_points_list = scene_points_list + all_points_list
merged_points_list = np.asarray(merged_points_list)
print("merged_points_list shape: "+str(merged_points_list.shape))
while not num_points_valid:
gsnet_input_points = self.crop_pts_sphere(merged_points_list,
central_point_of_target,
radius=target_points_radius)
if(len(gsnet_input_points) >= required_num_points):
num_points_valid = True
# downsample points
gsnet_input_points = np.asarray(gsnet_input_points)
gsnet_input_points = gsnet_input_points[np.random.choice(gsnet_input_points.shape[0], required_num_points, replace=False)]
else:
target_points_radius += self.crop_radius_step
if(target_points_radius > self.crop_max_radius):
print("Target points radius exceeds maximum radius")
print("Number of points: "+str(len(gsnet_input_points)))
print("Interpolating points")
# Interpolate points
if(len(gsnet_input_points) < self.num_knn_neighbours+1):
self.best_grasp = None
self.vis.clear_grasp()
self.done = True
return
else:
gsnet_input_points = np.asarray(gsnet_input_points)
num_interpolation = required_num_points - len(gsnet_input_points)
gsnet_input_points = self.interpolate_point_cloud(gsnet_input_points, num_interpolation)
num_points_valid = True
gsnet_input_points = gsnet_input_points.tolist()
# gsnet_input_points = target_points_list
# gsnet_input_points = merged_points_list
self.publish_pointcloud([[0,0,0]])
self.publish_pointcloud(gsnet_input_points)
# save point cloud as .txt
@ -320,7 +382,7 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
qualities.append(gg['score'])
# Visualize grasps
self.vis.grasps(self.base_frame, grasps, qualities)
# self.vis.grasps(self.base_frame, grasps, qualities)
# Filter grasps
filtered_grasps = []
@ -337,12 +399,13 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
filtered_qualities.append(quality)
if len(filtered_grasps) > 0:
self.best_grasp, quality = self.select_best_grasp(filtered_grasps, filtered_qualities)
# self.vis.clear_grasps()
self.vis.grasp(self.base_frame, self.best_grasp, quality)
else:
self.best_grasp = None
self.vis.clear_grasp()
self.done = True
self.publish_pointcloud([[0,0,0]])
# self.publish_pointcloud([[0,0,0]])
def publish_grasps(self, gg):
marker_array = MarkerArray()
@ -433,6 +496,20 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
i = np.argmax(qualities)
return grasps[i], qualities[i]
# pose = rhtf.lookup(self.base_frame, "panda_link8", rospy.Time.now())
# ee_matrix = pose.as_matrix()
# minimum_difference = np.inf
# for i in range(len(grasps)-1, -1, -1):
# grasp = grasps[i]
# g_matrix = grasp.pose.as_matrix()
# # calculatr the Frobenius norm (rotation difference)
# rotation_difference = np.linalg.norm(ee_matrix[:3, :3] - g_matrix[:3, :3])
# if rotation_difference < minimum_difference:
# minimum_difference = rotation_difference
# best_grasp = grasp
# best_quality = qualities[i]
# return best_grasp, best_quality
def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
@ -457,6 +534,7 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
scene_sample_num=-1, target_sample_num=-1):
target_points = []
scene_points = []
all_points = []
K = self.intrinsic.K
depth_shape = depth_img.shape
@ -481,8 +559,9 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
y = y_mat[i][j]
z = z_mat[i][j]
# no background and no plane
if(int(seg_id) != int(255) and int(seg_id) != int(support_id)):
if(int(seg_id) != int(255)): # no background points
all_points.append([x,y,z])
if(int(seg_id) != int(support_id)): # no support points
# This pixel belongs to the scene
scene_points.append([x,y,z])
if(int(seg_id) == int(target_id)):
@ -490,6 +569,7 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
target_points.append([x,y,z])
# Sample points
all_points = np.asarray(all_points)
target_points = np.asarray(target_points)
scene_points = np.asarray(scene_points)
if scene_sample_num > 0:
@ -518,11 +598,14 @@ class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
return target_points, scene_points
all_points = all_points.reshape(1, all_points.shape[0], 3)
all_points = torch.from_numpy(all_points).float().to("cuda:0")
return target_points, scene_points, all_points
def interpolate_point_cloud(self, points, num_new_points):
# Fit NearestNeighbors on existing points
nbrs = NearestNeighbors(n_neighbors=5).fit(points)
nbrs = NearestNeighbors(n_neighbors=self.num_knn_neighbours).fit(points)
interpolated_points = []
for _ in range(num_new_points):

View File

@ -11,12 +11,31 @@ red = [1.0, 0.0, 0.0]
blue = [0, 0.6, 1.0]
grey = [0.9, 0.9, 0.9]
def create_grasp_marker(frame, grasp, color, ns, id=0, depth=0.05, radius=0.005):
# Faster grasp marker using Marker.LINE_LIST
pose, w, d, scale = grasp.pose, grasp.width, depth, [radius, 0.0, 0.0]
points = [[0, -w / 2, d], [0, -w / 2, 0], [0, w / 2, 0], [0, w / 2, d]]
return create_line_strip_marker(frame, pose, scale, color, points, ns, id)
class Visualizer(vgn.rviz.Visualizer):
def clear_ig_views(self):
markers = [Marker(action=Marker.DELETE, ns="ig_views", id=i) for i in range(24)]
self.draw(markers)
def clear_grasps(self):
markers = [Marker(action=Marker.DELETE, ns="grasps", id=i) for i in range(self.num_grasps)]
self.draw(markers)
self.num_grasps = 0
def grasps(self, frame, grasps, qualities, vmin=0.5, vmax=1.0):
markers = []
self.num_grasps = 0
for i, (grasp, quality) in enumerate(zip(grasps, qualities)):
color = cm((quality - vmin) / (vmax - vmin))
markers.append(create_grasp_marker(frame, grasp, color, "grasps", i))
self.num_grasps += 1
self.draw(markers)
def bbox(self, frame, bbox):
pose = Transform.identity()
scale = [0.004, 0.0, 0.0]

View File

@ -103,6 +103,12 @@ class Simulation:
def get_target_bbox(self, uid):
aabb_min, aabb_max = p.getAABB(uid)
# enlarge the bounding box
aabb_min = np.asarray(aabb_min)
aabb_max = np.asarray(aabb_max)
aabb_min -= 0.0
aabb_max += 0.0
return AABBox(aabb_min, aabb_max)
def check_for_grasps(self, bbox):