import itertools from numba import jit import numpy as np import rospy from .policy import MultiViewPolicy from .timer import Timer from .active_perception_demo import APInferenceEngine from robot_helpers.spatial import Transform import torch import torch.nn.functional as F import matplotlib.pyplot as plt class RealTime3DVisualizer: def __init__(self): points = np.random.rand(1, 1, 3) self.points = points[0] # Extract the points (n, 3) self.fig = plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') # Initial plot setup self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o') # Set labels for each axis self.ax.set_xlabel('X') self.ax.set_ylabel('Y') self.ax.set_zlabel('Z') # Set title self.ax.set_title('Real-time 3D Points Visualization') # Show the plot in interactive mode plt.ion() plt.show() def update_points(self, new_points): # Ensure the points have the expected shape (1, n, 3) assert new_points.shape[0] == 1 and new_points.shape[2] == 3, "Input points must have shape (1, n, 3)" # Update the stored points self.points = new_points[0] # Extract the points (n, 3) # Remove the old scatter plot and draw new points self.scatter.remove() self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o') # Pause briefly to allow the plot to update plt.pause(0.001) class ActivePerceptionMultiViewPolicy(MultiViewPolicy): def __init__(self): super().__init__() self.max_views = rospy.get_param("ap_grasp/max_views") self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path") self.ap_inference_engine = APInferenceEngine(self.ap_config_path) self.pcdvis = RealTime3DVisualizer() def activate(self, bbox, view_sphere): super().activate(bbox, view_sphere) def update(self, img, seg, target_id, x, q): if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable(): self.done = True else: with Timer("state_update"): self.integrate(img, x, q) with Timer("view_generation"): target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id) ap_input = {'target_pts': target_points, 'scene_pts': scene_points} ap_output = self.ap_inference_engine.inference(ap_input) delta_rot_6d = ap_output['estimated_delta_rot_6d'] current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0") est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0] look_at_center = torch.from_numpy(self.bbox.center).float().to("cuda:0") nbv_tensor = self.get_transformed_mat(current_cam_pose, est_delta_rot_mat, look_at_center) nbv_numpy = nbv_tensor.cpu().numpy() nbv_transform = Transform.from_matrix(nbv_numpy) self.x_d = nbv_transform def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor: a1, a2 = d6[..., :3], d6[..., 3:] b1 = F.normalize(a1, dim=-1) b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 b2 = F.normalize(b2, dim=-1) b3 = torch.cross(b1, b2, dim=-1) return torch.stack((b1, b2, b3), dim=-2) def get_transformed_mat(self, src_mat, delta_rot, target_center_w): src_rot = src_mat[:3, :3] dst_rot = src_rot @ delta_rot.T dst_mat = torch.eye(4).to(dst_rot.device) dst_mat[:3, :3] = dst_rot distance = torch.norm(target_center_w - src_mat[:3, 3]) z_axis_camera = dst_rot[:3, 2].reshape(-1) new_camera_position_w = target_center_w - distance * z_axis_camera dst_mat[:3, 3] = new_camera_position_w return dst_mat def depth_image_to_ap_input(self, depth_img, seg_img, target_id): target_points = [] scene_points = [] K = self.intrinsic.K depth_shape = depth_img.shape seg_shape = seg_img.shape if(depth_shape == seg_shape): img_shape = depth_shape else: print("Depth image shape and segmentation image shape are not the same") return None # Convert depth image to 3D points u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0])) x_factors = (u_indices - K[0, 2]) / K[0, 0] y_factors = (v_indices - K[1, 2]) / K[1, 1] z_mat = depth_img x_mat = x_factors * z_mat y_mat = y_factors * z_mat for i in range(img_shape[0]): for j in range(img_shape[1]): seg_id = seg_img[i, j] x = x_mat[i][j] y = y_mat[i][j] z = z_mat[i][j] if(int(seg_id) == int(target_id)): # This pixel belongs to the target object to be grasped target_points.append([x,y,z]) else: # This pixel belongs to the scene scene_points.append([x,y,z]) target_points = np.asarray(target_points) target_points = target_points.reshape(1, target_points.shape[0], 3) self.pcdvis.update_points(target_points) target_points = torch.from_numpy(target_points).float().to("cuda:0") scene_points = np.asarray(scene_points) scene_points = scene_points.reshape(1, scene_points.shape[0], 3) scene_points = torch.from_numpy(scene_points).float().to("cuda:0") return target_points, scene_points def best_grasp_prediction_is_stable(self): if self.best_grasp: t = (self.T_task_base * self.best_grasp.pose).translation i, j, k = (t / self.tsdf.voxel_size).astype(int) qs = self.qual_hist[:, i, j, k] if np.count_nonzero(qs) == self.T and np.mean(qs) > 0.9: return True return False