Files
nbv_sim/src/active_grasp/active_perception_policy.py
2024-11-03 04:11:36 -06:00

488 lines
22 KiB
Python

import itertools
from numba import jit
import numpy as np
import rospy
from .policy import MultiViewPolicy, SingleViewPolicy
from .timer import Timer
from .active_perception_demo import APInferenceEngine
from robot_helpers.spatial import Transform
import torch
import torch.nn.functional as F
import requests
import matplotlib.pyplot as plt
from vgn.grasp import ParallelJawGrasp
import time
from visualization_msgs.msg import Marker, MarkerArray
from geometry_msgs.msg import Pose
import tf
from robot_helpers.ros import tf as rhtf
from sklearn.neighbors import NearestNeighbors
import sensor_msgs.point_cloud2 as pc2
from sensor_msgs.msg import PointCloud2, PointField
import std_msgs.msg
import ros_numpy
class RealTime3DVisualizer:
def __init__(self):
points = np.random.rand(1, 1, 3)
self.points = points[0] # Extract the points (n, 3)
self.fig = plt.figure()
self.ax = self.fig.add_subplot(111, projection='3d')
# Initial plot setup
self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o')
# Set labels for each axis
self.ax.set_xlabel('X')
self.ax.set_ylabel('Y')
self.ax.set_zlabel('Z')
# Set title
self.ax.set_title('Real-time 3D Points Visualization')
# Show the plot in interactive mode
plt.ion()
plt.show()
def update_points(self, new_points):
# Ensure the points have the expected shape (1, n, 3)
assert new_points.shape[0] == 1 and new_points.shape[2] == 3, "Input points must have shape (1, n, 3)"
# Update the stored points
self.points = new_points[0] # Extract the points (n, 3)
# Remove the old scatter plot and draw new points
self.scatter.remove()
self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o')
# Pause briefly to allow the plot to update
plt.pause(0.001)
class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
def __init__(self, flask_base_url="http://127.0.0.1:5000"):
super().__init__()
self.max_views = rospy.get_param("ap_grasp/max_views")
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
self.crop_min_radius = rospy.get_param("ap_grasp/crop_min_radius")
self.crop_radius_step = rospy.get_param("ap_grasp/crop_radius_step")
self.crop_max_radius = rospy.get_param("ap_grasp/crop_max_radius")
self.num_knn_neighbours = rospy.get_param("ap_grasp/num_knn_neighbours")
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
self.pcdvis = RealTime3DVisualizer()
self.updated = False
self._base_url = flask_base_url
# For debugging
self.pcd_publisher = rospy.Publisher('/debug_pcd', PointCloud2, queue_size=10)
self.grasp_publisher = rospy.Publisher("/grasp_markers", MarkerArray, queue_size=10)
def request_grasping_pose(self, data):
response = requests.post(f"{self._base_url}/get_gsnet_grasp", json=data)
return response.json()
def update(self, img, seg, target_id, support_id, x, q):
# Visualize scene cloud
self.vis_scene_cloud(img, x)
# Visualize Initial Camera Pose
self.vis_cam_pose(x)
# When policy hasn't produced an available grasp
while(self.updated == False):
# Clear visualization points
self.publish_pointcloud([[0,0,0]])
# Inference with our model
self.target_points, self.scene_points, _ = self.depth_image_to_ap_input(img,
seg,
target_id,
support_id,
scene_sample_num=16384,
target_sample_num=1024)
ap_input = {'target_pts': self.target_points,
'scene_pts': self.scene_points}
# save point cloud
# target_points = self.target_points.cpu().numpy()[0,:,:]
self.scene_points_cache = self.scene_points.cpu().numpy()[0]
self.cam_pose_cache = rhtf.lookup(self.base_frame, self.cam_frame, rospy.Time.now()).as_matrix()
self.publish_pointcloud(self.scene_points_cache)
# time.sleep(10000000)
# np.savetxt("target_points.txt", target_points, delimiter=",")
# np.savetxt("scene_points.txt", scene_points, delimiter=",")
ap_output = self.ap_inference_engine.inference(ap_input)
delta_rot_6d = ap_output['estimated_delta_rot_6d']
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
target_points_np = self.target_points.cpu().numpy()[0,:,:]
central_point_of_target = np.mean(target_points_np, axis=0)
look_at_center = torch.from_numpy(central_point_of_target).float().to("cuda:0")
# Convert look_at_center's reference frame to arm frame
look_at_center_T = np.eye(4)
look_at_center_T[:3, 3] = look_at_center.cpu().numpy()
look_at_center_T = current_cam_pose.cpu().numpy() @ look_at_center_T
look_at_center = torch.from_numpy(look_at_center_T[:3, 3]).float().to("cuda:0")
# Get the NBV
nbv_tensor = self.get_transformed_mat(current_cam_pose,
est_delta_rot_mat,
look_at_center)
nbv_numpy = nbv_tensor.cpu().numpy()
nbv_transform = Transform.from_matrix(nbv_numpy)
x_d = nbv_transform
# Check if this pose available
if(self.solve_cam_ik(self.q0, x_d)):
self.vis_cam_pose(x_d)
self.x_d = x_d
self.updated = True
print("Found an NBV!")
return
# Policy has produced an available nbv and moved to that camera pose
if(self.updated == True):
# Request grasping poses from GSNet
self.target_points, self.scene_points, self.all_points = \
self.depth_image_to_ap_input(img, seg, target_id, support_id)
target_points_list = np.asarray(self.target_points.cpu().numpy())[0].tolist()
central_point_of_target = np.mean(target_points_list, axis=0)
# Crop points to desired number of points
num_points_valid = False
target_points_radius = self.crop_min_radius
required_num_points = 15000
# Merge all points and scene points
self.all_points = np.asarray(self.all_points.cpu().numpy())[0]
all_points_list = self.all_points.tolist()
scene_points_list = self.scene_points_cache.tolist()
# convert scene_points to current frame
self.cam_pose = rhtf.lookup(self.base_frame, self.cam_frame, rospy.Time.now()).as_matrix()
for idx, point in enumerate(scene_points_list):
point = np.asarray(point)
T_point_cam_old = np.array([[1, 0, 0, point[0]],
[0, 1, 0, point[1]],
[0, 0, 1, point[2]],
[0, 0, 0, 1]])
# point in arm frame
T_point_arm = np.matmul(self.cam_pose_cache, T_point_cam_old)
# point in camera frame
T_point_cam_new = np.matmul(np.linalg.inv(self.cam_pose),
T_point_arm)
point = T_point_cam_new[:3, 3].T
point = point.tolist()
scene_points_list[idx] = point
merged_points_list = scene_points_list + all_points_list
merged_points_list = np.asarray(merged_points_list)
print("merged_points_list shape: "+str(merged_points_list.shape))
while not num_points_valid:
gsnet_input_points = self.crop_pts_sphere(merged_points_list,
central_point_of_target,
radius=target_points_radius)
if(len(gsnet_input_points) >= required_num_points):
num_points_valid = True
# downsample points
gsnet_input_points = np.asarray(gsnet_input_points)
gsnet_input_points = gsnet_input_points[np.random.choice(gsnet_input_points.shape[0], required_num_points, replace=False)]
else:
target_points_radius += self.crop_radius_step
if(target_points_radius > self.crop_max_radius):
print("Target points radius exceeds maximum radius")
print("Number of points: "+str(len(gsnet_input_points)))
print("Interpolating points")
# Interpolate points
if(len(gsnet_input_points) < self.num_knn_neighbours+1):
self.best_grasp = None
self.vis.clear_grasp()
self.done = True
return
else:
gsnet_input_points = np.asarray(gsnet_input_points)
num_interpolation = required_num_points - len(gsnet_input_points)
gsnet_input_points = self.interpolate_point_cloud(gsnet_input_points, num_interpolation)
num_points_valid = True
gsnet_input_points = gsnet_input_points.tolist()
# gsnet_input_points = target_points_list
# gsnet_input_points = merged_points_list
self.publish_pointcloud(gsnet_input_points)
# save point cloud as .txt
np.savetxt("gsnet_input_points.txt", gsnet_input_points, delimiter=",")
received_points = False
while(received_points == False):
gsnet_grasping_poses = np.asarray(self.request_grasping_pose(gsnet_input_points))
received_points = True
print(gsnet_grasping_poses[0].keys())
# DEBUG: publish grasps
# self.publish_grasps(gsnet_grasping_poses)
# Convert all grasping poses' reference frame to arm frame
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
for gg in gsnet_grasping_poses:
gg['T'] = current_cam_pose.cpu().numpy().dot(np.asarray(gg['T']))
# Now here is a mysterous bug, the grasping poses have to be rotated
# 90 degrees around y-axis to be in the correct reference frame
R = np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]])
gg['T'][:3, :3] = gg['T'][:3, :3].dot(R)
# Convert grasping poses to ParallelJawGrasp objects
grasps = []
qualities = []
for gg in gsnet_grasping_poses:
T = Transform.from_matrix(np.asarray(gg['T']))
width = 0.075
grasp = ParallelJawGrasp(T, width)
grasps.append(grasp)
qualities.append(gg['score'])
# Visualize grasps
# self.vis.grasps(self.base_frame, grasps, qualities)
# Filter grasps
filtered_grasps = []
filtered_qualities = []
for grasp, quality in zip(grasps, qualities):
pose = grasp.pose
# tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
tip = pose.translation
if self.bbox.is_inside(tip):
# if(True):
q_grasp = self.solve_ee_ik(q, pose * self.T_grasp_ee)
if q_grasp is not None:
filtered_grasps.append(grasp)
filtered_qualities.append(quality)
if len(filtered_grasps) > 0:
self.best_grasp, quality = self.select_best_grasp(filtered_grasps, filtered_qualities)
# self.vis.clear_grasps()
self.vis.grasp(self.base_frame, self.best_grasp, quality)
else:
self.best_grasp = None
self.vis.clear_grasp()
self.done = True
# self.publish_pointcloud([[0,0,0]])
def publish_grasps(self, gg):
marker_array = MarkerArray()
marker_array.markers = []
for idx, g in enumerate(gg):
g['T'] = np.asarray(g['T'])
marker = Marker()
marker.header.frame_id = "camera_depth_optical_frame"
marker.header.stamp = rospy.Time.now()
marker.ns = "grasps"
marker.id = idx
marker.type = Marker.ARROW
marker.action = Marker.ADD
marker.pose.position.x = g['T'][0, 3]
marker.pose.position.y = g['T'][1, 3]
marker.pose.position.z = g['T'][2, 3]
q = tf.transformations.quaternion_from_matrix(g['T'])
marker.pose.orientation.x = q[0]
marker.pose.orientation.y = q[1]
marker.pose.orientation.z = q[2]
marker.pose.orientation.w = q[3]
marker.scale.x = 0.1
marker.scale.y = 0.01
marker.scale.z = 0.01
marker.color.a = 1.0
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0
marker_array.markers.append(marker)
self.grasp_publisher.publish(marker_array)
def publish_pointcloud(self, point_cloud):
point_cloud = np.asarray(point_cloud)
cloud_msg = self.create_pointcloud_msg(point_cloud)
self.pcd_publisher.publish(cloud_msg)
def create_pointcloud_msg(self, point_cloud):
# Define the header
header = std_msgs.msg.Header()
header.stamp = rospy.Time.now()
header.frame_id = 'camera_depth_optical_frame' # Change this to your desired frame of reference
# Define the fields for the PointCloud2 message
fields = [
PointField(name="x", offset=0, datatype=PointField.FLOAT32, count=1),
PointField(name="y", offset=4, datatype=PointField.FLOAT32, count=1),
PointField(name="z", offset=8, datatype=PointField.FLOAT32, count=1),
]
# Create the PointCloud2 message
cloud_msg = pc2.create_cloud(header, fields, point_cloud)
return cloud_msg
def crop_pts_sphere(self, points, crop_center, radius=0.2):
crop_mask = np.linalg.norm(points - crop_center, axis=1) < radius
return points[crop_mask].tolist()
def deactivate(self):
self.vis.clear_ig_views()
self.updated = False
def vis_cam_pose(self, x):
# Integrate
self.views.append(x)
self.vis.path(self.base_frame, self.intrinsic, self.views)
def vis_scene_cloud(self, img, x):
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
scene_cloud = self.tsdf.get_scene_cloud()
self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
def generate_grasp(self, q):
tsdf_grid = self.tsdf.get_grid()
out = self.vgn.predict(tsdf_grid)
self.vis.quality(self.task_frame, self.tsdf.voxel_size, out.qual, 0.9)
grasps, qualities = self.filter_grasps(out, q)
if len(grasps) > 0:
self.best_grasp, quality = self.select_best_grasp(grasps, qualities)
self.vis.grasp(self.base_frame, self.best_grasp, quality)
else:
self.best_grasp = None
self.vis.clear_grasp()
def select_best_grasp(self, grasps, qualities):
i = np.argmax(qualities)
return grasps[i], qualities[i]
# pose = rhtf.lookup(self.base_frame, "panda_link8", rospy.Time.now())
# ee_matrix = pose.as_matrix()
# minimum_difference = np.inf
# for i in range(len(grasps)-1, -1, -1):
# grasp = grasps[i]
# g_matrix = grasp.pose.as_matrix()
# # calculatr the Frobenius norm (rotation difference)
# rotation_difference = np.linalg.norm(ee_matrix[:3, :3] - g_matrix[:3, :3])
# if rotation_difference < minimum_difference:
# minimum_difference = rotation_difference
# best_grasp = grasp
# best_quality = qualities[i]
# return best_grasp, best_quality
def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def get_transformed_mat(self, src_mat, delta_rot, target_center_w):
src_rot = src_mat[:3, :3]
dst_rot = src_rot @ delta_rot.T
dst_mat = torch.eye(4).to(dst_rot.device)
dst_mat[:3, :3] = dst_rot
distance = torch.norm(target_center_w - src_mat[:3, 3])
z_axis_camera = dst_rot[:3, 2].reshape(-1)
new_camera_position_w = target_center_w - distance * z_axis_camera
dst_mat[:3, 3] = new_camera_position_w
return dst_mat
def depth_image_to_ap_input(self, depth_img, seg_img, target_id, support_id,
scene_sample_num=-1, target_sample_num=-1):
target_points = []
scene_points = []
all_points = []
K = self.intrinsic.K
depth_shape = depth_img.shape
seg_shape = seg_img.shape
if(depth_shape == seg_shape):
img_shape = depth_shape
else:
print("Depth image shape and segmentation image shape are not the same")
return None
# Convert depth image to 3D points
u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0]))
x_factors = (u_indices - K[0, 2]) / K[0, 0]
y_factors = (v_indices - K[1, 2]) / K[1, 1]
z_mat = depth_img
x_mat = x_factors * z_mat
y_mat = y_factors * z_mat
for i in range(img_shape[0]):
for j in range(img_shape[1]):
seg_id = seg_img[i, j]
x = x_mat[i][j]
y = y_mat[i][j]
z = z_mat[i][j]
if(int(seg_id) != int(255)): # no background points
all_points.append([x,y,z])
if(int(seg_id) != int(support_id)): # no support points
# This pixel belongs to the scene
scene_points.append([x,y,z])
if(int(seg_id) == int(target_id)):
# This pixel belongs to the target object to be grasped
target_points.append([x,y,z])
# Sample points
all_points = np.asarray(all_points)
target_points = np.asarray(target_points)
scene_points = np.asarray(scene_points)
if scene_sample_num > 0:
if scene_points.shape[0] < scene_sample_num:
print("Scene points are less than the required sample number")
num_interpolation = scene_sample_num - scene_points.shape[0]
scene_points = self.interpolate_point_cloud(scene_points, num_interpolation)
print("Interpolated scene points. Shape: "+str(scene_points.shape))
else:
scene_points = scene_points[np.random.choice(scene_points.shape[0], scene_sample_num, replace=False)]
if target_sample_num > 0:
if target_points.shape[0] < target_sample_num:
print("Target points are less than the required sample number")
num_interpolation = target_sample_num - target_points.shape[0]
target_points = self.interpolate_point_cloud(target_points, num_interpolation)
print("Interpolated target points. Shape: "+str(target_points.shape))
else:
target_points = target_points[np.random.choice(target_points.shape[0], target_sample_num, replace=False)]
# reshape points
target_points = target_points.reshape(1, target_points.shape[0], 3)
# self.pcdvis.update_points(target_points)
target_points = torch.from_numpy(target_points).float().to("cuda:0")
scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
all_points = all_points.reshape(1, all_points.shape[0], 3)
all_points = torch.from_numpy(all_points).float().to("cuda:0")
return target_points, scene_points, all_points
def interpolate_point_cloud(self, points, num_new_points):
# Fit NearestNeighbors on existing points
nbrs = NearestNeighbors(n_neighbors=self.num_knn_neighbours).fit(points)
interpolated_points = []
for _ in range(num_new_points):
random_point = points[np.random.choice(len(points))]
distances, indices = nbrs.kneighbors([random_point])
neighbors = points[indices[0]]
new_point = neighbors.mean(axis=0) # Average of neighbors
interpolated_points.append(new_point)
return np.vstack([points, interpolated_points])