first commit
This commit is contained in:
BIN
core/__pycache__/ab_global_only_pts_pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/ab_global_only_pts_pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/ab_local_only_pts_pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/ab_local_only_pts_pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/ab_mlp_pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/ab_mlp_pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/evaluation.cpython-39.pyc
Normal file
BIN
core/__pycache__/evaluation.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/global_pts_pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/global_pts_pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/local_pts_pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/local_pts_pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/loss.cpython-39.pyc
Normal file
BIN
core/__pycache__/loss.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/nbv_dataset.cpython-39.pyc
Normal file
BIN
core/__pycache__/nbv_dataset.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/old_seq_dataset.cpython-39.pyc
Normal file
BIN
core/__pycache__/old_seq_dataset.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/pipeline.cpython-39.pyc
Normal file
BIN
core/__pycache__/pipeline.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/seq_dataset.cpython-39.pyc
Normal file
BIN
core/__pycache__/seq_dataset.cpython-39.pyc
Normal file
Binary file not shown.
BIN
core/__pycache__/seq_dataset_preprocessed.cpython-39.pyc
Normal file
BIN
core/__pycache__/seq_dataset_preprocessed.cpython-39.pyc
Normal file
Binary file not shown.
85
core/ab_global_only_pts_pipeline.py
Normal file
85
core/ab_global_only_pts_pipeline.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_global_only")
|
||||
class NBVReconstructionGlobalPointsOnlyPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsOnlyPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 50)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = global_scanned_feat
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
95
core/ab_local_only_pts_pipeline.py
Normal file
95
core/ab_local_only_pts_pipeline.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_local_only")
|
||||
class NBVReconstructionLocalPointsOnlyPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionLocalPointsOnlyPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 50)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
device = next(self.parameters()).device
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pts_feat = self.pts_encoder.encode_points(scanned_pts)
|
||||
pose_feat = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
seq_feat = torch.cat([pts_feat, pose_feat], dim=-1)
|
||||
feat_seq_list.append(seq_feat)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
81
core/ab_mlp_pipeline.py
Normal file
81
core/ab_mlp_pipeline.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_mlp")
|
||||
class NBVReconstructionMLPPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionMLPPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
input_data = {
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
pred = self.view_finder(input_data)
|
||||
output = {
|
||||
"pred": pred,
|
||||
"gt": best_to_world_pose_9d_batch,
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
estimated_delta_rot_9d, _ = self.view_finder.next_best_view(main_feat)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
device = next(self.parameters()).device
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pts_feat = self.pts_encoder.encode_points(scanned_pts)
|
||||
pose_feat = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
seq_feat = torch.cat([pts_feat, pose_feat], dim=-1)
|
||||
feat_seq_list.append(seq_feat)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
if self.enable_global_scanned_feat:
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
109
core/evaluation.py
Normal file
109
core/evaluation.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.render import RenderUtil
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
import PytorchBoot.namespace as namespace
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
|
||||
|
||||
|
||||
@stereotype.evaluation_method("pose_diff")
|
||||
class PoseDiff:
|
||||
def __init__(self, _):
|
||||
pass
|
||||
|
||||
def evaluate(self, output_list, data_list):
|
||||
results = {namespace.TensorBoard.SCALAR: {}}
|
||||
rot_angle_list = []
|
||||
trans_dist_list = []
|
||||
for output, data in zip(output_list, data_list):
|
||||
gt_pose_9d = data['best_to_world_pose_9d']
|
||||
pred_pose_9d = output['pred_pose_9d']
|
||||
gt_rot_6d = gt_pose_9d[:, :6]
|
||||
gt_trans = gt_pose_9d[:, 6:]
|
||||
pred_rot_6d = pred_pose_9d[:, :6]
|
||||
pred_trans = pred_pose_9d[:, 6:]
|
||||
gt_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(gt_rot_6d)
|
||||
pred_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_rot_6d)
|
||||
rotation_angles = PoseUtil.rotation_angle_distance(gt_rot_mat, pred_rot_mat)
|
||||
|
||||
rot_angle_list.extend(list(rotation_angles))
|
||||
trans_dist = torch.norm(gt_trans-pred_trans, dim=1).mean().item()
|
||||
trans_dist_list.append(trans_dist)
|
||||
|
||||
|
||||
results[namespace.TensorBoard.SCALAR]["rot_diff"] = float(sum(rot_angle_list) / len(rot_angle_list))
|
||||
results[namespace.TensorBoard.SCALAR]["trans_diff"] = float(sum(trans_dist_list) / len(trans_dist_list))
|
||||
return results
|
||||
|
||||
|
||||
|
||||
@stereotype.evaluation_method("coverage_rate_increase")
|
||||
class ConverageRateIncrease:
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.renderer_path = config["renderer_path"]
|
||||
|
||||
def evaluate(self, output_list, data_list):
|
||||
results = {namespace.TensorBoard.SCALAR: {}}
|
||||
gt_coverate_increase_list = []
|
||||
pred_coverate_increase_list = []
|
||||
cr_diff_list = []
|
||||
for output, data in zip(output_list, data_list):
|
||||
scanned_cr = data['scanned_coverage_rate']
|
||||
gt_cr = data["best_coverage_rate"]
|
||||
scene_path_list = data['scene_path']
|
||||
model_points_normals_list = data['model_points_normals']
|
||||
scanned_view_pts_list = data['scanned_target_pts_list']
|
||||
pred_pose_9ds = output['pred_pose_9d']
|
||||
nO_to_nL_pose_batch = data["nO_to_nL_pose"]
|
||||
voxel_threshold_list = data["voxel_threshold"]
|
||||
filter_degree_list = data["filter_degree"]
|
||||
first_frame_to_world = data["first_frame_to_world"]
|
||||
pred_n_to_world_pose_mats = torch.eye(4, device=pred_pose_9ds.device).unsqueeze(0).repeat(pred_pose_9ds.shape[0], 1, 1)
|
||||
pred_n_to_world_pose_mats[:,:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9ds[:, :6])
|
||||
pred_n_to_world_pose_mats[:,:3,3] = pred_pose_9ds[:, 6:]
|
||||
pred_n_to_world_pose_mats = torch.matmul(first_frame_to_world, pred_n_to_world_pose_mats)
|
||||
for idx in range(len(scanned_cr)):
|
||||
model_points_normals = model_points_normals_list[idx]
|
||||
scanned_view_pts = scanned_view_pts_list[idx]
|
||||
voxel_threshold = voxel_threshold_list[idx]
|
||||
model_pts = model_points_normals[:,:3]
|
||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||
old_scanned_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
gt_coverate_increase_list.append(gt_cr[idx]-old_scanned_cr)
|
||||
|
||||
scene_path = scene_path_list[idx]
|
||||
pred_pose = pred_n_to_world_pose_mats[idx]
|
||||
|
||||
filter_degree = filter_degree_list[idx]
|
||||
nO_to_nL_pose = nO_to_nL_pose_batch[idx]
|
||||
try:
|
||||
new_pts, _ = RenderUtil.render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
|
||||
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
except Exception as e:
|
||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
||||
pred_cr = old_scanned_cr
|
||||
pred_coverate_increase_list.append(pred_cr-old_scanned_cr)
|
||||
cr_diff_list.append(gt_cr[idx]-pred_cr)
|
||||
|
||||
results[namespace.TensorBoard.SCALAR]["gt_cr_increase"] = float(sum(gt_coverate_increase_list) / len(gt_coverate_increase_list))
|
||||
results[namespace.TensorBoard.SCALAR]["pred_cr_increase"] = float(sum(pred_coverate_increase_list) / len(pred_coverate_increase_list))
|
||||
results[namespace.TensorBoard.SCALAR]["cr_diff"] = float(sum(cr_diff_list) / len(cr_diff_list))
|
||||
return results
|
||||
|
||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||
if new_pts is not None:
|
||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||
else:
|
||||
new_scanned_view_pts = scanned_view_pts
|
||||
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
|
||||
|
||||
|
98
core/global_pts_pipeline.py
Normal file
98
core/global_pts_pipeline.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_global")
|
||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 50)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
99
core/local_pts_pipeline.py
Normal file
99
core/local_pts_pipeline.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_local")
|
||||
class NBVReconstructionLocalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionLocalPointsPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 50)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
device = next(self.parameters()).device
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pts_feat = self.pts_encoder.encode_points(scanned_pts)
|
||||
pose_feat = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
seq_feat = torch.cat([pts_feat, pose_feat], dim=-1)
|
||||
feat_seq_list.append(seq_feat)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
if self.enable_global_scanned_feat:
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
27
core/loss.py
Normal file
27
core/loss.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import torch
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
|
||||
@stereotype.loss_function("gf_loss")
|
||||
class GFLoss:
|
||||
def __init__(self, _):
|
||||
pass
|
||||
|
||||
def compute(self, output, _):
|
||||
estimated_score = output['estimated_score']
|
||||
target_score = output['target_score']
|
||||
std = output['std']
|
||||
bs = estimated_score.shape[0]
|
||||
loss_weighting = std ** 2
|
||||
loss = torch.mean(torch.sum((loss_weighting * (estimated_score - target_score) ** 2).view(bs, -1), dim=-1))
|
||||
return loss
|
||||
|
||||
@stereotype.loss_function("mse_loss")
|
||||
class MSELoss:
|
||||
def __init__(self,_):
|
||||
pass
|
||||
|
||||
def compute(self, output, _):
|
||||
pred_pose = output["pred"]
|
||||
gt_pose = output["gt"]
|
||||
loss = torch.mean(torch.sum((pred_pose - gt_pose) ** 2, dim=-1))
|
||||
return loss
|
282
core/nbv_dataset.py
Normal file
282
core/nbv_dataset.py
Normal file
@@ -0,0 +1,282 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
|
||||
@stereotype.dataset("nbv_reconstruction_dataset")
|
||||
class NBVReconstructionDataset(BaseDataset):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionDataset, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.split_file_path = config["split_file"]
|
||||
self.scene_name_list = self.load_scene_name_list()
|
||||
self.datalist = self.get_datalist()
|
||||
|
||||
self.pts_num = config["pts_num"]
|
||||
self.type = config["type"]
|
||||
self.cache = config.get("cache")
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
#self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 1
|
||||
self.datalist = self.datalist*scale_ratio
|
||||
if self.cache:
|
||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||
expr_name = ConfigManager.get("runner", "experiment", "name")
|
||||
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
||||
# self.preprocess_cache()
|
||||
|
||||
def load_scene_name_list(self):
|
||||
scene_name_list = []
|
||||
with open(self.split_file_path, "r") as f:
|
||||
for line in f:
|
||||
scene_name = line.strip()
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||
scene_max_coverage_rate = 0
|
||||
max_coverage_rate_list = []
|
||||
|
||||
for seq_idx in range(seq_num):
|
||||
label_path = DataLoadUtil.get_label_path(
|
||||
self.root_dir, scene_name, seq_idx
|
||||
)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
max_coverage_rate = label_data["max_coverage_rate"]
|
||||
if max_coverage_rate > scene_max_coverage_rate:
|
||||
scene_max_coverage_rate = max_coverage_rate
|
||||
max_coverage_rate_list.append(max_coverage_rate)
|
||||
|
||||
if max_coverage_rate_list:
|
||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||
|
||||
for seq_idx in range(seq_num):
|
||||
label_path = DataLoadUtil.get_label_path(
|
||||
self.root_dir, scene_name, seq_idx
|
||||
)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
|
||||
for data_pair in label_data["data_pairs"]:
|
||||
scanned_views = data_pair[0]
|
||||
next_best_view = data_pair[1]
|
||||
datalist.append(
|
||||
{
|
||||
"scanned_views": scanned_views,
|
||||
"next_best_view": next_best_view,
|
||||
"seq_max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name,
|
||||
"label_idx": seq_idx,
|
||||
"scene_max_coverage_rate": scene_max_coverage_rate,
|
||||
}
|
||||
)
|
||||
return datalist
|
||||
|
||||
def preprocess_cache(self):
|
||||
Log.info("preprocessing cache...")
|
||||
for item_idx in range(len(self.datalist)):
|
||||
self.__getitem__(item_idx)
|
||||
Log.success("finish preprocessing cache.")
|
||||
|
||||
def load_from_cache(self, scene_name, curr_frame_idx):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
if os.path.exists(cache_path):
|
||||
data = np.loadtxt(cache_path)
|
||||
return data
|
||||
else:
|
||||
return None
|
||||
|
||||
def save_to_cache(self, scene_name, curr_frame_idx, data):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
try:
|
||||
np.savetxt(cache_path, data)
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
scanned_views = data_item_info["scanned_views"]
|
||||
nbv = data_item_info["next_best_view"]
|
||||
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
(
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [])
|
||||
#start_time = time.time()
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
target_point_cloud = (
|
||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||
)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
||||
target_point_cloud, self.pts_num
|
||||
)
|
||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||
scanned_coverages_rate.append(coverage_rate)
|
||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||
np.asarray(n_to_world_pose[:3, :3])
|
||||
)
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
total_points += len(downsampled_target_point_cloud)
|
||||
start_indices.append(total_points)
|
||||
|
||||
|
||||
#end_time = time.time()
|
||||
#Log.info(f"load data time: {end_time - start_time}")
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
best_frame_to_world = cam_info["cam_to_world"]
|
||||
|
||||
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||
np.asarray(best_frame_to_world[:3, :3])
|
||||
)
|
||||
best_to_world_trans = best_frame_to_world[:3, 3]
|
||||
best_to_world_9d = np.concatenate(
|
||||
[best_to_world_6d, best_to_world_trans], axis=0
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||
|
||||
# all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
# all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
# scanned_pts_mask = []
|
||||
# for idx, start_idx in enumerate(start_indices):
|
||||
# if idx == len(start_indices) - 1:
|
||||
# break
|
||||
# end_idx = start_indices[idx+1]
|
||||
# view_inverse = inverse[start_idx:end_idx]
|
||||
# view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
# view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
# mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
# #scanned_pts_mask.append(mask)
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||
#"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32), # Ndarray(9)
|
||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||
"scene_name": scene_name, # String
|
||||
}
|
||||
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datalist)
|
||||
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
collate_data = {}
|
||||
|
||||
''' ------ Varialbe Length ------ '''
|
||||
|
||||
collate_data["scanned_pts"] = [
|
||||
torch.tensor(item["scanned_pts"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
# collate_data["scanned_pts_mask"] = [
|
||||
# torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
# ]
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||
)
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
|
||||
return collate_fn
|
||||
|
||||
|
||||
# -------------- Debug ---------------- #
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 4096,
|
||||
"type": namespace.Mode.TRAIN,
|
||||
}
|
||||
ds = NBVReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
# ds.__getitem__(10)
|
||||
dl = ds.get_loader(shuffle=True)
|
||||
for idx, data in enumerate(dl):
|
||||
data = ds.process_batch(data, "cuda:0")
|
||||
print(data)
|
||||
# ------ Debug Start ------
|
||||
import ipdb
|
||||
|
||||
ipdb.set_trace()
|
||||
# ------ Debug End ------
|
154
core/old_seq_dataset.py
Normal file
154
core/old_seq_dataset.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
@stereotype.dataset("old_seq_nbv_reconstruction_dataset")
|
||||
class SeqNBVReconstructionDataset(BaseDataset):
|
||||
def __init__(self, config):
|
||||
super(SeqNBVReconstructionDataset, self).__init__(config)
|
||||
self.type = config["type"]
|
||||
if self.type != namespace.Mode.TEST:
|
||||
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.split_file_path = config["split_file"]
|
||||
self.scene_name_list = self.load_scene_name_list()
|
||||
self.datalist = self.get_datalist()
|
||||
self.pts_num = config["pts_num"]
|
||||
|
||||
self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
|
||||
def load_scene_name_list(self):
|
||||
scene_name_list = []
|
||||
with open(self.split_file_path, "r") as f:
|
||||
for line in f:
|
||||
scene_name = line.strip()
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||
scene_max_coverage_rate = 0
|
||||
scene_max_cr_idx = 0
|
||||
|
||||
for seq_idx in range(seq_num):
|
||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
max_coverage_rate = label_data["max_coverage_rate"]
|
||||
if max_coverage_rate > scene_max_coverage_rate:
|
||||
scene_max_coverage_rate = max_coverage_rate
|
||||
scene_max_cr_idx = seq_idx
|
||||
|
||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
first_frame = label_data["best_sequence"][0]
|
||||
best_seq_len = len(label_data["best_sequence"])
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": first_frame,
|
||||
"max_coverage_rate": scene_max_coverage_rate,
|
||||
"best_seq_len": best_seq_len,
|
||||
"label_idx": scene_max_cr_idx,
|
||||
})
|
||||
return datalist
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
first_frame_idx = data_item_info["first_frame"][0]
|
||||
first_frame_coverage = data_item_info["first_frame"][1]
|
||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
||||
first_left_cam_pose = first_cam_info["cam_to_world"]
|
||||
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
||||
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||
first_pts_num = first_target_point_cloud.shape[0]
|
||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
||||
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
||||
first_to_world_trans = first_left_cam_pose[:3,3]
|
||||
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||
scene_path = os.path.join(self.root_dir, scene_name)
|
||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
|
||||
data_item = {
|
||||
"first_pts_num": np.asarray(
|
||||
first_pts_num, dtype=np.int32
|
||||
),
|
||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
||||
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
||||
"scene_name": scene_name,
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"voxel_threshold": voxel_threshold,
|
||||
"filter_degree": self.filter_degree,
|
||||
"O_to_L_pose": first_O_to_first_L_pose,
|
||||
"first_frame_coverage": first_frame_coverage,
|
||||
"scene_path": scene_path,
|
||||
"model_points_normals": model_points_normals,
|
||||
"best_seq_len": data_item_info["best_seq_len"],
|
||||
"first_frame_id": first_frame_idx,
|
||||
}
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datalist)
|
||||
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
collate_data = {}
|
||||
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
||||
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
||||
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
||||
for key in batch[0].keys():
|
||||
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
return collate_fn
|
||||
|
||||
# -------------- Debug ---------------- #
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
|
||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||
"ratio": 0.005,
|
||||
"batch_size": 2,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 32684,
|
||||
"type": namespace.Mode.TEST,
|
||||
"load_from_preprocess": True
|
||||
}
|
||||
ds = SeqNBVReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
#ds.__getitem__(10)
|
||||
dl = ds.get_loader(shuffle=True)
|
||||
for idx, data in enumerate(dl):
|
||||
data = ds.process_batch(data, "cuda:0")
|
||||
print(data)
|
||||
# ------ Debug Start ------
|
||||
import ipdb;ipdb.set_trace()
|
||||
# ------ Debug End ------+
|
140
core/pipeline.py
Normal file
140
core/pipeline.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import torch
|
||||
import time
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||
class NBVReconstructionPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
|
||||
self.pts_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pts_encoder"]
|
||||
)
|
||||
self.pose_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||
)
|
||||
self.seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||
)
|
||||
self.view_finder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||
)
|
||||
|
||||
|
||||
self.eps = float(self.config["eps"])
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = (
|
||||
torch.rand(bs, device=gt_delta_9d.device) * (1.0 - self.eps) + self.eps
|
||||
)
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = -z * std / (std**2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
""" get std """
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(
|
||||
best_to_world_pose_9d_batch
|
||||
)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std,
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 1)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
|
||||
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=True
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||
for i in range(batch_size):
|
||||
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||
partial_point_feat_seq = []
|
||||
for j in range(seq_len):
|
||||
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||
if partial_per_point_feat.shape[0] == 0:
|
||||
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||
else:
|
||||
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||
partial_point_feat_seq.append(partial_point_feat)
|
||||
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
|
||||
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
for i in range(len(main_feat)):
|
||||
if torch.isnan(main_feat[i]).any():
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
209
core/seq_dataset.py
Normal file
209
core/seq_dataset.py
Normal file
@@ -0,0 +1,209 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
|
||||
@stereotype.dataset("seq_reconstruction_dataset")
|
||||
class SeqReconstructionDataset(BaseDataset):
|
||||
def __init__(self, config):
|
||||
super(SeqReconstructionDataset, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.split_file_path = config["split_file"]
|
||||
self.scene_name_list = self.load_scene_name_list()
|
||||
self.datalist = self.get_datalist()
|
||||
|
||||
self.pts_num = config["pts_num"]
|
||||
self.type = config["type"]
|
||||
self.cache = config.get("cache")
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
#self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 1
|
||||
self.datalist = self.datalist*scale_ratio
|
||||
if self.cache:
|
||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||
expr_name = ConfigManager.get("runner", "experiment", "name")
|
||||
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
||||
# self.preprocess_cache()
|
||||
|
||||
def load_scene_name_list(self):
|
||||
scene_name_list = []
|
||||
with open(self.split_file_path, "r") as f:
|
||||
for line in f:
|
||||
scene_name = line.strip()
|
||||
if not os.path.exists(os.path.join(self.root_dir, scene_name)):
|
||||
continue
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
|
||||
def get_scene_name_list(self):
|
||||
return self.scene_name_list
|
||||
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
total = len(self.scene_name_list)
|
||||
for idx, scene_name in enumerate(self.scene_name_list):
|
||||
print(f"processing {scene_name} ({idx}/{total})")
|
||||
scene_max_cr_idx = 0
|
||||
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
|
||||
|
||||
for i in range(10,frame_len):
|
||||
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||
print(pts.shape)
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
print(i)
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": i,
|
||||
"best_seq_len": -1,
|
||||
"max_coverage_rate": 1.0,
|
||||
"label_idx": scene_max_cr_idx,
|
||||
})
|
||||
return datalist
|
||||
|
||||
def preprocess_cache(self):
|
||||
Log.info("preprocessing cache...")
|
||||
for item_idx in range(len(self.datalist)):
|
||||
self.__getitem__(item_idx)
|
||||
Log.success("finish preprocessing cache.")
|
||||
|
||||
def load_from_cache(self, scene_name, curr_frame_idx):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
if os.path.exists(cache_path):
|
||||
data = np.loadtxt(cache_path)
|
||||
return data
|
||||
else:
|
||||
return None
|
||||
|
||||
def save_to_cache(self, scene_name, curr_frame_idx, data):
|
||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||
try:
|
||||
np.savetxt(cache_path, data)
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def seq_combined_pts(self, scene, frame_idx_list):
|
||||
all_combined_pts = []
|
||||
for i in frame_idx_list:
|
||||
path = DataLoadUtil.get_path(self.root_dir, scene, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
all_combined_pts.append(pts)
|
||||
all_combined_pts = np.vstack(all_combined_pts)
|
||||
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.003)
|
||||
return downsampled_all_pts
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||
best_seq_len = data_item_info["best_seq_len"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
(
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [])
|
||||
view = data_item_info["first_frame"]
|
||||
frame_idx = view
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
target_point_cloud = (
|
||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||
)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
||||
target_point_cloud, self.pts_num
|
||||
)
|
||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||
|
||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||
np.asarray(n_to_world_pose[:3, :3])
|
||||
)
|
||||
first_left_cam_pose = cam_info["cam_to_world"]
|
||||
first_center_cam_pose = cam_info["cam_to_world_O"]
|
||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
|
||||
frame_list = []
|
||||
for i in range(DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)):
|
||||
frame_list.append(i)
|
||||
gt_pts = self.seq_combined_pts(scene_name, frame_list)
|
||||
data_item = {
|
||||
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||
"best_seq_len": best_seq_len, # Int
|
||||
"scene_name": scene_name, # String
|
||||
"gt_pts": gt_pts, # Ndarray(N x 3)
|
||||
"scene_path": os.path.join(self.root_dir, scene_name), # String
|
||||
"O_to_L_pose": first_O_to_first_L_pose,
|
||||
}
|
||||
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datalist)
|
||||
|
||||
|
||||
# -------------- Debug ---------------- #
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
import pickle
|
||||
import os
|
||||
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
||||
config = {
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/view",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "/media/hofee/data/data/test_bottle/test_bottle.txt",
|
||||
"load_from_preprocess": True,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 8192,
|
||||
"type": namespace.Mode.TEST,
|
||||
}
|
||||
|
||||
output_dir = "/media/hofee/data/data/test_bottle/preprocessed_dataset"
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
ds = SeqReconstructionDataset(config)
|
||||
for i in tqdm(range(len(ds)), desc="processing dataset"):
|
||||
output_path = os.path.join(output_dir, f"item_{i}.pkl")
|
||||
item = ds.__getitem__(i)
|
||||
for key, value in item.items():
|
||||
if isinstance(value, np.ndarray):
|
||||
item[key] = value.tolist()
|
||||
#import ipdb; ipdb.set_trace()
|
||||
with open(output_path, "wb") as f:
|
||||
pickle.dump(item, f)
|
82
core/seq_dataset_preprocessed.py
Normal file
82
core/seq_dataset_preprocessed.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
import pickle
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
@stereotype.dataset("seq_reconstruction_dataset_preprocessed")
|
||||
class SeqReconstructionDatasetPreprocessed(BaseDataset):
|
||||
def __init__(self, config):
|
||||
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.real_root_dir = r"/media/hofee/repository/final_test_set/view"
|
||||
self.item_list = os.listdir(self.root_dir)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = pickle.load(open(os.path.join(self.root_dir, self.item_list[index]), "rb"))
|
||||
data_item = {
|
||||
"first_scanned_pts": np.asarray(data["first_scanned_pts"], dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"first_scanned_n_to_world_pose_9d": np.asarray(data["first_scanned_n_to_world_pose_9d"], dtype=np.float32), # Ndarray(S x 9)
|
||||
"seq_max_coverage_rate": data["seq_max_coverage_rate"], # Float, range(0, 1)
|
||||
"best_seq_len": data["best_seq_len"], # Int
|
||||
"scene_name": data["scene_name"], # String
|
||||
"gt_pts": np.asarray(data["gt_pts"], dtype=np.float32), # Ndarray(N x 3)
|
||||
"scene_path": os.path.join(self.real_root_dir, data["scene_name"]), # String
|
||||
"O_to_L_pose": np.asarray(data["O_to_L_pose"], dtype=np.float32),
|
||||
}
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.item_list)
|
||||
|
||||
# -------------- Debug ---------------- #
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
'''
|
||||
OmniObject3d_test:
|
||||
root_dir: "H:\\AI\\Datasets\\packed_test_data"
|
||||
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset
|
||||
split_file: "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
- coverage_rate_increase
|
||||
ratio: 0.1
|
||||
batch_size: 1
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/preprocessed_dataset",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 1,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 8192,
|
||||
"type": "test",
|
||||
}
|
||||
ds = SeqReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
print(ds.__getitem__(10))
|
||||
|
Reference in New Issue
Block a user