first commit

This commit is contained in:
2025-05-13 09:03:38 +08:00
commit b98753bfbb
121 changed files with 8665 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

57
runners/data_spliter.py Normal file
View File

@@ -0,0 +1,57 @@
import os
import random
from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils import Log
import PytorchBoot.stereotype as stereotype
from PytorchBoot.status import status_manager
@stereotype.runner("data_spliter")
class DataSpliter(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("data_split")
self.root_dir = ConfigManager.get("runner", "split", "root_dir")
self.type = ConfigManager.get("runner", "split", "type")
self.datasets = ConfigManager.get("runner", "split", "datasets")
self.datapath_list = self.load_all_datapath()
def run(self):
self.split_dataset()
def split_dataset(self):
random.shuffle(self.datapath_list)
start_idx = 0
for dataset_idx in range(len(self.datasets)):
dataset = list(self.datasets.keys())[dataset_idx]
ratio = self.datasets[dataset]["ratio"]
path = self.datasets[dataset]["path"]
split_size = int(len(self.datapath_list) * ratio)
split_files = self.datapath_list[start_idx:start_idx + split_size]
start_idx += split_size
self.save_split_files(path, split_files)
status_manager.set_progress("split", "data_splitor", "split dataset", dataset_idx, len(self.datasets))
Log.success(f"save {dataset} split files to {path}")
status_manager.set_progress("split", "data_splitor", "split dataset", len(self.datasets), len(self.datasets))
def save_split_files(self, path, split_files):
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "w") as f:
f.write("\n".join(split_files))
def load_all_datapath(self):
return os.listdir(self.root_dir)
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)

View File

@@ -0,0 +1,360 @@
import os
import json
from utils.render import RenderUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
from beans.predict_result import PredictResult
import torch
from tqdm import tqdm
import numpy as np
import pickle
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
@stereotype.runner("evaluate_uncertainty_guide")
class EvaluateUncertaintyGuide(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
CM = 0.01
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) ** 2
self.output_data_root = ConfigManager.get(namespace.Stereotype.RUNNER, "output_data_root")
self.output_data = dict()
for scene_name in os.listdir(self.output_data_root):
real_scene_name = scene_name[:-len("_poses.npy")]
self.output_data[real_scene_name] = np.load(os.path.join(self.output_data_root, scene_name))
#mport ipdb; ipdb.set_trace()
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
if os.path.exists(self.stat_result_path):
with open(self.stat_result_path, "r") as f:
self.stat_result = json.load(f)
else:
self.stat_result = {}
''' Test '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
self.inference()
Log.success("Inference finished.")
def inference(self):
#self.pipeline.eval()
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name()
total=int(len(test_set))
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
try:
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e:
print(e)
Log.error(f"Error, {e}")
continue
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def get_output_data(self, scene_name, idx):
pose_matrix = self.output_data[scene_name][idx]
pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(pose_matrix[:3,:3])
pose_9d = np.concatenate([pose_6d, pose_matrix[:3,3]], axis=0).reshape(1,9)
import ipdb; ipdb.set_trace()
return {"pred_pose_9d": pose_9d}
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
scene_name = data["scene_name"]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
''' data for rendering '''
scene_path = data["scene_path"]
O_to_L_pose = data["O_to_L_pose"]
voxel_threshold = self.voxel_size
filter_degree = 75
down_sampled_model_pts = data["gt_pts"]
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
first_frame_to_world = np.eye(4)
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
''' data for inference '''
input_data = {}
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
input_data["scanned_pts"] = [torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)]
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST
input_pts_N = input_data["combined_scanned_pts"].shape[1]
root = os.path.dirname(scene_path)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts]
history_indices = [first_frame_scan_points_indices]
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
retry_duplication_pose = []
retry_no_pts_pose = []
retry_overlap_pose = []
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
#import time
for i in range(len(self.output_data[scene_name])):
#import ipdb; ipdb.set_trace()
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
output = self.get_output_data(scene_name, i)
pred_pose_9d = output["pred_pose_9d"]
import ipdb; ipdb.set_trace()
#pred_pose = torch.eye(4, device=pred_pose_9d.device)
# # save pred_pose_9d ------
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
# scene_dir = os.path.join(root, scene_name)
# if not os.path.exists(scene_dir):
# os.makedirs(scene_dir)
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
# np.savetxt(pts_path, np_combined_scanned_pts)
# # ----- ----- -----
predict_result = PredictResult(pred_pose_9d, input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
# -----------------------
# import ipdb; ipdb.set_trace()
# predict_result.visualize()
# -----------------------
pred_pose_9d_candidates = predict_result.candidate_9d_poses
for pred_pose_9d in pred_pose_9d_candidates:
#import ipdb; ipdb.set_trace()
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
#import ipdb; ipdb.set_trace()
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
curr_overlap_area_threshold = overlap_area_threshold
else:
curr_overlap_area_threshold = overlap_area_threshold * 0.5
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
if not overlap:
Log.yellow("no overlap!")
retry += 1
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
continue
history_indices.append(new_scan_points_indices)
except Exception as e:
Log.error(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
if new_target_pts.shape[0] == 0:
Log.red("no pts in new target")
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0], torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)], dim=0)]
last_pred_cr = pred_cr
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
success += 1
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
last_pts_num = pts_num
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"combined_scanned_pts": input_data["combined_scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["seq_max_coverage_rate"],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"retry_overlap_pose": retry_overlap_pose,
"best_seq_len": data["best_seq_len"],
}
self.stat_result[scene_name] = {
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq))
return result
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def save_inference_result(self, dataset_name, scene_name, output):
dataset_dir = os.path.join(self.output_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
pickle.dump(output, open(output_path, "wb"))
with open(self.stat_result_path, "w") as f:
json.dump(self.stat_result, f)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
#self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
#Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')

View File

@@ -0,0 +1,352 @@
import os
import json
from utils.render import RenderUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
from beans.predict_result import PredictResult
import torch
from tqdm import tqdm
import numpy as np
import pickle
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
@stereotype.runner("global_and_local_points_inferencer")
class GlobalAndLocalPointsInferencer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
CM = 0.01
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
if os.path.exists(self.stat_result_path):
with open(self.stat_result_path, "r") as f:
self.stat_result = json.load(f)
else:
self.stat_result = {}
''' Test '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
self.inference()
Log.success("Inference finished.")
def inference(self):
self.pipeline.eval()
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name()
total=int(len(test_set))
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
try:
#import ipdb; ipdb.set_trace()
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e:
print(e)
Log.error(f"Error, {e}")
continue
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
scene_name = data["scene_name"]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
''' data for rendering '''
scene_path = data["scene_path"]
O_to_L_pose = data["O_to_L_pose"]
voxel_threshold = self.voxel_size
filter_degree = 75
down_sampled_model_pts = data["gt_pts"]
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
first_frame_to_world = np.eye(4)
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
''' data for inference '''
input_data = {}
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
input_data["scanned_pts"] = [torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)]
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST
input_pts_N = input_data["combined_scanned_pts"].shape[1]
root = os.path.dirname(scene_path)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
#
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts]
history_indices = [first_frame_scan_points_indices]
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
retry_duplication_pose = []
retry_no_pts_pose = []
retry_overlap_pose = []
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
#import time
#import ipdb; ipdb.set_trace()
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
#import ipdb; ipdb.set_trace()
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
output = self.pipeline(input_data)
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
# # save pred_pose_9d ------
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
# scene_dir = os.path.join(root, scene_name)
# if not os.path.exists(scene_dir):
# os.makedirs(scene_dir)
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
# np.savetxt(pts_path, np_combined_scanned_pts)
# # ----- ----- -----
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
# -----------------------
# import ipdb; ipdb.set_trace()
# predict_result.visualize()
# -----------------------
pred_pose_9d_candidates = predict_result.candidate_9d_poses
for pred_pose_9d in pred_pose_9d_candidates:
#import ipdb; ipdb.set_trace()
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
#import ipdb; ipdb.set_trace()
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
curr_overlap_area_threshold = overlap_area_threshold
else:
curr_overlap_area_threshold = overlap_area_threshold * 0.5
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
if not overlap:
Log.yellow("no overlap!")
retry += 1
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
continue
history_indices.append(new_scan_points_indices)
except Exception as e:
Log.error(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
if new_target_pts.shape[0] == 0:
Log.red("no pts in new target")
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0], torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)], dim=0)]
last_pred_cr = pred_cr
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
success += 1
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
last_pts_num = pts_num
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"combined_scanned_pts": input_data["combined_scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["seq_max_coverage_rate"],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"retry_overlap_pose": retry_overlap_pose,
"best_seq_len": data["best_seq_len"],
}
self.stat_result[scene_name] = {
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq))
return result
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def save_inference_result(self, dataset_name, scene_name, output):
dataset_dir = os.path.join(self.output_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
pickle.dump(output, open(output_path, "wb"))
with open(self.stat_result_path, "w") as f:
json.dump(self.stat_result, f)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')

View File

@@ -0,0 +1,348 @@
import os
import json
from utils.render import RenderUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
from beans.predict_result import PredictResult
import torch
from tqdm import tqdm
import numpy as np
import pickle
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
@stereotype.runner("global_points_inferencer")
class GlobalPointsInferencer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
CM = 0.01
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
if os.path.exists(self.stat_result_path):
with open(self.stat_result_path, "r") as f:
self.stat_result = json.load(f)
else:
self.stat_result = {}
''' Test '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
self.inference()
Log.success("Inference finished.")
def inference(self):
self.pipeline.eval()
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name()
total=int(len(test_set))
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
try:
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e:
print(e)
Log.error(f"Error, {e}")
continue
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
scene_name = data["scene_name"]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
''' data for rendering '''
scene_path = data["scene_path"]
O_to_L_pose = data["O_to_L_pose"]
voxel_threshold = self.voxel_size
filter_degree = 75
down_sampled_model_pts = data["gt_pts"]
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
first_frame_to_world = np.eye(4)
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
''' data for inference '''
input_data = {}
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST
input_pts_N = input_data["combined_scanned_pts"].shape[1]
root = os.path.dirname(scene_path)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts]
history_indices = [first_frame_scan_points_indices]
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
retry_duplication_pose = []
retry_no_pts_pose = []
retry_overlap_pose = []
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
#import time
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
#import ipdb; ipdb.set_trace()
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
output = self.pipeline(input_data)
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
# # save pred_pose_9d ------
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
# scene_dir = os.path.join(root, scene_name)
# if not os.path.exists(scene_dir):
# os.makedirs(scene_dir)
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
# np.savetxt(pts_path, np_combined_scanned_pts)
# # ----- ----- -----
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
# -----------------------
# import ipdb; ipdb.set_trace()
# predict_result.visualize()
# -----------------------
pred_pose_9d_candidates = predict_result.candidate_9d_poses
for pred_pose_9d in pred_pose_9d_candidates:
#import ipdb; ipdb.set_trace()
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
#import ipdb; ipdb.set_trace()
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
curr_overlap_area_threshold = overlap_area_threshold
else:
curr_overlap_area_threshold = overlap_area_threshold * 0.5
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
if not overlap:
Log.yellow("no overlap!")
retry += 1
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
continue
history_indices.append(new_scan_points_indices)
except Exception as e:
Log.error(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
if new_target_pts.shape[0] == 0:
Log.red("no pts in new target")
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
last_pred_cr = pred_cr
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
success += 1
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
last_pts_num = pts_num
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"combined_scanned_pts": input_data["combined_scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["seq_max_coverage_rate"],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"retry_overlap_pose": retry_overlap_pose,
"best_seq_len": data["best_seq_len"],
}
self.stat_result[scene_name] = {
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq))
return result
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def save_inference_result(self, dataset_name, scene_name, output):
dataset_dir = os.path.join(self.output_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
pickle.dump(output, open(output_path, "wb"))
with open(self.stat_result_path, "w") as f:
json.dump(self.stat_result, f)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')

116
runners/inference_server.py Normal file
View File

@@ -0,0 +1,116 @@
import os
import json
import torch
import numpy as np
from flask import Flask, request, jsonify
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from utils.pts import PtsUtil
from beans.predict_result import PredictResult
@stereotype.runner("inferencer_server")
class InferencerServer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
''' Web Server '''
self.app = Flask(__name__)
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
self.pts_num = 8192
self.voxel_size = 0.002
''' Experiment '''
self.load_experiment("inferencer_server")
def get_input_data(self, data):
input_data = {}
scanned_pts = data["scanned_pts"]
scanned_n_to_world_pose_9d = data["scanned_n_to_world_pose_9d"]
combined_scanned_views_pts = np.concatenate(scanned_pts, axis=0)
voxel_downsampled_combined_scanned_pts = PtsUtil.voxel_downsample_point_cloud(
combined_scanned_views_pts, self.voxel_size
)
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
voxel_downsampled_combined_scanned_pts, self.pts_num, require_idx=True
)
input_data["scanned_pts"] = scanned_pts
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
return input_data
def get_result(self, output_data):
pred_pose_9d = output_data["pred_pose_9d"]
pred_pose_9d = np.asarray(PredictResult(pred_pose_9d.cpu().numpy(), None, cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses, dtype=np.float32)
result = {
"pred_pose_9d": pred_pose_9d.tolist()
}
return result
def collate_input(self, input_data):
collated_input_data = {}
collated_input_data["scanned_pts"] = [torch.tensor(input_data["scanned_pts"], dtype=torch.float32, device=self.device)]
collated_input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(input_data["scanned_n_to_world_pose_9d"], dtype=torch.float32, device=self.device)]
collated_input_data["combined_scanned_pts"] = torch.tensor(input_data["combined_scanned_pts"], dtype=torch.float32, device=self.device).unsqueeze(0)
return collated_input_data
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
@self.app.route("/inference", methods=["POST"])
def inference():
data = request.json
input_data = self.get_input_data(data)
collated_input_data = self.collate_input(input_data)
output_data = self.pipeline.forward_test(collated_input_data)
result = self.get_result(output_data)
return jsonify(result)
self.app.run(host="0.0.0.0", port=5000)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)

View File

@@ -0,0 +1,350 @@
import os
import json
from utils.render import RenderUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
from beans.predict_result import PredictResult
import torch
from tqdm import tqdm
import numpy as np
import pickle
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
@stereotype.runner("local_points_inferencer")
class LocalPointsInferencer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
CM = 0.01
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) ** 2
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
if os.path.exists(self.stat_result_path):
with open(self.stat_result_path, "r") as f:
self.stat_result = json.load(f)
else:
self.stat_result = {}
''' Test '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
self.inference()
Log.success("Inference finished.")
def inference(self):
self.pipeline.eval()
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name()
total=int(len(test_set))
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
try:
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e:
print(e)
Log.error(f"Error, {e}")
continue
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
scene_name = data["scene_name"]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
''' data for rendering '''
scene_path = data["scene_path"]
O_to_L_pose = data["O_to_L_pose"]
voxel_threshold = self.voxel_size
filter_degree = 75
down_sampled_model_pts = data["gt_pts"]
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
first_frame_to_world = np.eye(4)
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
''' data for inference '''
input_data = {}
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
input_data["scanned_pts"] = [torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)]
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST
input_pts_N = input_data["combined_scanned_pts"].shape[1]
root = os.path.dirname(scene_path)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts]
history_indices = [first_frame_scan_points_indices]
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
retry_duplication_pose = []
retry_no_pts_pose = []
retry_overlap_pose = []
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
#import time
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
#import ipdb; ipdb.set_trace()
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
output = self.pipeline(input_data)
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
# # save pred_pose_9d ------
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
# scene_dir = os.path.join(root, scene_name)
# if not os.path.exists(scene_dir):
# os.makedirs(scene_dir)
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
# np.savetxt(pts_path, np_combined_scanned_pts)
# # ----- ----- -----
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
# -----------------------
# import ipdb; ipdb.set_trace()
# predict_result.visualize()
# -----------------------
pred_pose_9d_candidates = predict_result.candidate_9d_poses
for pred_pose_9d in pred_pose_9d_candidates:
#import ipdb; ipdb.set_trace()
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
#import ipdb; ipdb.set_trace()
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
curr_overlap_area_threshold = overlap_area_threshold
else:
curr_overlap_area_threshold = overlap_area_threshold * 0.5
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
if not overlap:
Log.yellow("no overlap!")
retry += 1
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
continue
history_indices.append(new_scan_points_indices)
except Exception as e:
Log.error(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
if new_target_pts.shape[0] == 0:
Log.red("no pts in new target")
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0], torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)], dim=0)]
last_pred_cr = pred_cr
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
success += 1
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
last_pts_num = pts_num
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"combined_scanned_pts": input_data["combined_scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["seq_max_coverage_rate"],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"retry_overlap_pose": retry_overlap_pose,
"best_seq_len": data["best_seq_len"],
}
self.stat_result[scene_name] = {
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq))
return result
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts]
else:
new_scanned_view_pts = scanned_view_pts
combined_point_cloud = np.vstack(new_scanned_view_pts)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def save_inference_result(self, dataset_name, scene_name, output):
dataset_dir = os.path.join(self.output_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
pickle.dump(output, open(output_path, "wb"))
with open(self.stat_result_path, "w") as f:
json.dump(self.stat_result, f)
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
self.current_iter = meta["last_iter"]
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')

456
runners/simulator.py Normal file
View File

@@ -0,0 +1,456 @@
# import pybullet as p
# import pybullet_data
import numpy as np
import os
import time
from PytorchBoot.runners.runner import Runner
import PytorchBoot.stereotype as stereotype
from PytorchBoot.config import ConfigManager
from utils.control import ControlUtil
@stereotype.runner("simulator")
class Simulator(Runner):
CREATE: str = "create"
SIMULATE: str = "simulate"
INIT_GRIPPER_POSE:np.ndarray = np.asarray(
[[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292],
[ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.40499909],
[ 0.56884584, -0.04739109 ,-0.82107382 ,0.76881103],
[ 0. , 0. , 0. , 1. ]])
TURNTABLE_WORLD_TO_PYBULLET_WORLD:np.ndarray = np.asarray(
[[1, 0, 0, 0.8],
[0, 1, 0, 0],
[0, 0, 1, 0.5],
[0, 0, 0, 1]])
debug_pose = np.asarray([
[
0.992167055606842,
-0.10552699863910675,
0.06684812903404236,
-0.07388903945684433
],
[
0.10134342312812805,
0.3670985698699951,
-0.9246448874473572,
-0.41582486033439636
],
[
0.07303514331579208,
0.9241767525672913,
0.37491756677627563,
1.0754833221435547
],
[
0.0,
0.0,
0.0,
1.0
]])
def __init__(self, config_path):
super().__init__(config_path)
self.config_path = config_path
self.robot_id = None
self.turntable_id = None
self.target_id = None
camera_config = ConfigManager.get("simulation", "camera")
self.camera_params = {
'width': camera_config["width"],
'height': camera_config["height"],
'fov': camera_config["fov"],
'near': camera_config["near"],
'far': camera_config["far"]
}
self.sim_config = ConfigManager.get("simulation")
def run(self, cmd):
print(f"Simulator run {cmd}")
if cmd == self.CREATE:
self.prepare_env()
self.create_env()
elif cmd == self.SIMULATE:
self.simulate()
def simulate(self):
self.reset()
self.init()
debug_pose = Simulator.debug_pose
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
debug_pose = debug_pose @ offset
for _ in range(10000):
debug_pose_2 = np.eye(4)
debug_pose_2[0,0] = -1
debug_pose_2[2,3] = 0.5
self.move_to(debug_pose_2)
# Wait for the system to stabilize
for _ in range(20): # Simulate 20 steps to ensure stability
p.stepSimulation()
time.sleep(0.001) # Add small delay to ensure physics simulation
depth_img, segm_img = self.take_picture()
p.stepSimulation()
def prepare_env(self):
p.connect(p.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.setGravity(0, 0, 0)
p.loadURDF("plane.urdf")
def create_env(self):
print(self.config)
robot_config = self.sim_config["robot"]
turntable_config = self.sim_config["turntable"]
target_config = self.sim_config["target"]
self.robot_id = p.loadURDF(
robot_config["urdf_path"],
robot_config["initial_position"],
p.getQuaternionFromEuler(robot_config["initial_orientation"]),
useFixedBase=True
)
p.changeDynamics(
self.robot_id,
linkIndex=-1,
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
visual_shape_id = p.createVisualShape(
shapeType=p.GEOM_CYLINDER,
radius=turntable_config["radius"],
length=turntable_config["height"],
rgbaColor=[0.7, 0.7, 0.7, 1]
)
collision_shape_id = p.createCollisionShape(
shapeType=p.GEOM_CYLINDER,
radius=turntable_config["radius"],
height=turntable_config["height"]
)
self.turntable_id = p.createMultiBody(
baseMass=0, # 设置质量为0使其成为静态物体
baseCollisionShapeIndex=collision_shape_id,
baseVisualShapeIndex=visual_shape_id,
basePosition=turntable_config["center_position"]
)
# 禁用转盘的动力学
p.changeDynamics(
self.turntable_id,
-1, # -1 表示基座
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
obj_path = os.path.join(target_config["obj_dir"], target_config["obj_name"], "mesh.obj")
assert os.path.exists(obj_path), f"Error: File not found at {obj_path}"
# 加载OBJ文件作为目标物体
target_visual = p.createVisualShape(
shapeType=p.GEOM_MESH,
fileName=obj_path,
rgbaColor=target_config["rgba_color"],
specularColor=[0.4, 0.4, 0.4],
meshScale=[target_config["scale"]] * 3
)
# 使用简化的碰撞形状
target_collision = p.createCollisionShape(
shapeType=p.GEOM_MESH,
fileName=obj_path,
meshScale=[target_config["scale"]] * 3,
flags=p.GEOM_FORCE_CONCAVE_TRIMESH # 尝试使用凹面网格
)
# 创建目标物体
self.target_id = p.createMultiBody(
baseMass=0, # 设置质量为0使其成为静态物体
baseCollisionShapeIndex=target_collision,
baseVisualShapeIndex=target_visual,
basePosition=[
turntable_config["center_position"][0],
turntable_config["center_position"][1],
turntable_config["height"] + turntable_config["center_position"][2]
],
baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0])
)
# 禁用目标物体的动力学
p.changeDynamics(
self.target_id,
-1, # -1 表示基座
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
# 创建固定约束,将目标物体固定在转盘上
cid = p.createConstraint(
parentBodyUniqueId=self.turntable_id,
parentLinkIndex=-1, # -1 表示基座
childBodyUniqueId=self.target_id,
childLinkIndex=-1, # -1 表示基座
jointType=p.JOINT_FIXED,
jointAxis=[0, 0, 0],
parentFramePosition=[0, 0, 0], # 相对于转盘中心的偏移
childFramePosition=[0, 0, 0] # 相对于物体中心的偏移
)
# 设置约束参数
p.changeConstraint(cid, maxForce=100) # 设置最大力,确保约束稳定
def move_robot_to_pose(self, target_matrix):
# 从4x4齐次矩阵中提取位置前3个元素
position = target_matrix[:3, 3]
# 从3x3旋转矩阵中提取方向四元数
R = target_matrix[:3, :3]
# 计算四元数的w分量
w = np.sqrt(max(0, 1 + R[0,0] + R[1,1] + R[2,2])) / 2
# 避免除零错误,同时处理不同情况
if abs(w) < 1e-8:
# 当w接近0时的特殊情况
x = np.sqrt(max(0, 1 + R[0,0] - R[1,1] - R[2,2])) / 2
y = np.sqrt(max(0, 1 - R[0,0] + R[1,1] - R[2,2])) / 2
z = np.sqrt(max(0, 1 - R[0,0] - R[1,1] + R[2,2])) / 2
# 确定符号
if R[2,1] - R[1,2] < 0: x = -x
if R[0,2] - R[2,0] < 0: y = -y
if R[1,0] - R[0,1] < 0: z = -z
else:
# 正常情况
x = (R[2,1] - R[1,2]) / (4 * w)
y = (R[0,2] - R[2,0]) / (4 * w)
z = (R[1,0] - R[0,1]) / (4 * w)
orientation = (x, y, z, w)
# 设置IK求解参数
num_joints = p.getNumJoints(self.robot_id)
lower_limits = []
upper_limits = []
joint_ranges = []
rest_poses = []
# 获取关节限制和默认姿态
for i in range(num_joints):
joint_info = p.getJointInfo(self.robot_id, i)
lower_limits.append(joint_info[8])
upper_limits.append(joint_info[9])
joint_ranges.append(joint_info[9] - joint_info[8])
rest_poses.append(0) # 可以设置一个较好的默认姿态
# 使用增强版IK求解器考虑碰撞避障
joint_poses = p.calculateInverseKinematics(
self.robot_id,
7, # end effector link index
position,
orientation,
lowerLimits=lower_limits,
upperLimits=upper_limits,
jointRanges=joint_ranges,
restPoses=rest_poses,
maxNumIterations=100,
residualThreshold=1e-4
)
# 分步移动到目标位置,同时检查碰撞
current_poses = [p.getJointState(self.robot_id, i)[0] for i in range(7)]
steps = 50 # 分50步移动
for step in range(steps):
# 线性插值计算中间位置
intermediate_poses = []
for current, target in zip(current_poses, joint_poses):
t = (step + 1) / steps
intermediate = current + (target - current) * t
intermediate_poses.append(intermediate)
# 设置关节位置
for i in range(7):
p.setJointMotorControl2(
self.robot_id,
i,
p.POSITION_CONTROL,
intermediate_poses[i]
)
# 执行一步模拟
p.stepSimulation()
# 检查碰撞
if p.getContactPoints(self.robot_id, self.turntable_id):
print("检测到潜在碰撞,停止移动")
return False
return True
def rotate_turntable(self, angle_degrees):
# 旋转转盘
current_pos, current_orn = p.getBasePositionAndOrientation(self.turntable_id)
current_orn = p.getEulerFromQuaternion(current_orn)
new_orn = list(current_orn)
new_orn[2] += np.radians(angle_degrees)
new_orn_quat = p.getQuaternionFromEuler(new_orn)
p.resetBasePositionAndOrientation(
self.turntable_id,
current_pos,
new_orn_quat
)
# 同时旋转目标物体
target_pos, target_orn = p.getBasePositionAndOrientation(self.target_id)
target_orn = p.getEulerFromQuaternion(target_orn)
# 更新目标物体的方向
target_orn = list(target_orn)
target_orn[2] += np.radians(angle_degrees)
target_orn_quat = p.getQuaternionFromEuler(target_orn)
# 计算物体新的位置(绕转盘中心旋转)
turntable_center = current_pos
relative_pos = np.array(target_pos) - np.array(turntable_center)
# 创建旋转矩阵
theta = np.radians(angle_degrees)
rotation_matrix = np.array([
[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]
])
# 计算新的相对位置
new_relative_pos = rotation_matrix.dot(relative_pos)
new_pos = np.array(turntable_center) + new_relative_pos
# 更新目标物体的位置和方向
p.resetBasePositionAndOrientation(
self.target_id,
new_pos,
target_orn_quat
)
def get_camera_pose(self):
end_effector_link = 7 # Franka末端执行器的链接索引
state = p.getLinkState(self.robot_id, end_effector_link)
ee_pos = state[0] # 世界坐标系中的位置
camera_orn = state[1] # 世界坐标系中的朝向(四元数)
# 计算相机的视角矩阵
rot_matrix = p.getMatrixFromQuaternion(camera_orn)
rot_matrix = np.array(rot_matrix).reshape(3, 3)
# 相机的前向向量与末端执行器的x轴对齐
camera_forward = rot_matrix.dot(np.array([0, 0, 1])) # x轴方向
# 将相机位置向前偏移0.1米
offset = 0.12
camera_pos = np.array(ee_pos) + camera_forward * offset
camera_target = camera_pos + camera_forward
# 相机的上向量与末端执行器的z轴对齐
camera_up = rot_matrix.dot(np.array([1, 0, 0])) # z轴方向
return camera_pos, camera_target, camera_up
def take_picture(self):
camera_pos, camera_target, camera_up = self.get_camera_pose()
view_matrix = p.computeViewMatrix(
cameraEyePosition=camera_pos,
cameraTargetPosition=camera_target,
cameraUpVector=camera_up
)
projection_matrix = p.computeProjectionMatrixFOV(
fov=self.camera_params['fov'],
aspect=self.camera_params['width'] / self.camera_params['height'],
nearVal=self.camera_params['near'],
farVal=self.camera_params['far']
)
_,_,rgb_img,depth_img,segm_img = p.getCameraImage(
width=self.camera_params['width'],
height=self.camera_params['height'],
viewMatrix=view_matrix,
projectionMatrix=projection_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL
)
depth_img = self.camera_params['far'] * self.camera_params['near'] / (
self.camera_params['far'] - (self.camera_params['far'] - self.camera_params['near']) * depth_img)
depth_img = np.array(depth_img)
segm_img = np.array(segm_img)
return depth_img, segm_img
def reset(self):
target_pos = [0.5, 0, 1]
target_orn = p.getQuaternionFromEuler([np.pi, 0, 0])
target_matrix = np.eye(4)
target_matrix[:3, 3] = target_pos
target_matrix[:3, :3] = np.asarray(p.getMatrixFromQuaternion(target_orn)).reshape(3,3)
self.move_robot_to_pose(target_matrix)
def init(self):
self.move_to(Simulator.INIT_GRIPPER_POSE)
def move_to(self, pose: np.ndarray):
#delta_degree, min_new_cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
#print(delta_degree)
min_new_cam_to_pybullet_world = Simulator.TURNTABLE_WORLD_TO_PYBULLET_WORLD@pose
self.move_to_cam_pose(min_new_cam_to_pybullet_world)
#self.rotate_turntable(delta_degree)
def __del__(self):
p.disconnect()
def create_experiment(self, backup_name=None):
return super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
def move_to_cam_pose(self, camera_pose: np.ndarray):
# 从相机位姿矩阵中提取位置和旋转矩阵
camera_pos = camera_pose[:3, 3]
R_camera = camera_pose[:3, :3]
# 相机的朝向向量z轴
forward = R_camera[:, 2]
# 由于相机与末端执行器之间有固定偏移,需要计算末端执行器位置
# 相机在末端执行器前方0.12米
gripper_pos = camera_pos - forward * 0.12
# 末端执行器的旋转矩阵需要考虑与相机坐标系的固定变换
# 假设相机的forward对应gripper的z轴相机的x轴对应gripper的x轴
R_gripper = R_camera
# 构建4x4齐次变换矩阵
gripper_pose = np.eye(4)
gripper_pose[:3, :3] = R_gripper
gripper_pose[:3, 3] = gripper_pos
print(gripper_pose)
# 移动机器人到计算出的位姿
return self.move_robot_to_pose(gripper_pose)

View File

@@ -0,0 +1,154 @@
import os
import json
import numpy as np
from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils import Log
import PytorchBoot.stereotype as stereotype
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
from utils.pts import PtsUtil
@stereotype.runner("strategy_generator")
class StrategyGenerator(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("generate_strategy")
self.status_info = {
"status_manager": status_manager,
"app_name": "generate_strategy",
"runner_name": "strategy_generator"
}
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
self.seq_num = ConfigManager.get("runner","generate","seq_num")
self.overlap_area_threshold = ConfigManager.get("runner","generate","overlap_area_threshold")
self.compute_with_normal = ConfigManager.get("runner","generate","compute_with_normal")
self.scan_points_threshold = ConfigManager.get("runner","generate","scan_points_threshold")
def run(self):
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
voxel_threshold = ConfigManager.get("runner","generate","voxel_threshold")
for dataset_idx in range(len(dataset_name_list)):
dataset_name = dataset_name_list[dataset_idx]
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
from_idx = ConfigManager.get("datasets",dataset_name,"from")
to_idx = ConfigManager.get("datasets",dataset_name,"to")
scene_name_list = os.listdir(root_dir)
if to_idx == -1:
to_idx = len(scene_name_list)
cnt = 0
total = len(scene_name_list[from_idx:to_idx])
Log.info(f"Processing Dataset: {dataset_name}, From: {from_idx}, To: {to_idx}")
for scene_name in scene_name_list[from_idx:to_idx]:
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", cnt, total)
output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name,0)
if os.path.exists(output_label_path) and not self.overwrite:
Log.info(f"Scene <{scene_name}> Already Exists, Skip")
cnt += 1
continue
self.generate_sequence(root_dir, scene_name,voxel_threshold)
cnt += 1
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", total, total)
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
output_dir = os.path.join(str(self.experiment_path), "output")
os.makedirs(output_dir)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
def generate_sequence(self, root, scene_name, voxel_threshold):
status_manager.set_status("generate_strategy", "strategy_generator", "scene", scene_name)
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
model_pts = model_points_normals[:,:3]
down_sampled_model_pts, idx = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold, require_idx=True)
down_sampled_model_nrm = model_points_normals[idx, 3:]
pts_list = []
nrm_list = []
scan_points_indices_list = []
non_zero_cnt = 0
for frame_idx in range(frame_num):
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
nrm_path = os.path.join(root,scene_name, "nrm", f"{frame_idx}.npy")
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
pts = np.load(pts_path)
if self.compute_with_normal:
if pts.shape[0] == 0:
nrm = np.zeros((0,3))
else:
nrm = np.load(nrm_path)
nrm_list.append(nrm)
pts_list.append(pts)
indices = np.load(idx_path)
scan_points_indices_list.append(indices)
if pts.shape[0] > 0:
non_zero_cnt += 1
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
seq_num = min(self.seq_num, non_zero_cnt)
init_view_list = []
idx = 0
while len(init_view_list) < seq_num and idx < len(pts_list):
if pts_list[idx].shape[0] > 50:
init_view_list.append(idx)
idx += 1
seq_idx = 0
import time
for init_view in init_view_list:
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
start = time.time()
if not self.compute_with_normal:
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence(down_sampled_model_pts, pts_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
threshold=voxel_threshold, scan_points_threshold=self.scan_points_threshold, overlap_area_threshold=self.overlap_area_threshold, status_info=self.status_info)
else:
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_normal(down_sampled_model_pts, down_sampled_model_nrm, pts_list, nrm_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
threshold=voxel_threshold, scan_points_threshold=self.scan_points_threshold, overlap_area_threshold=self.overlap_area_threshold, status_info=self.status_info)
end = time.time()
print(f"Time: {end-start}")
data_pairs = self.generate_data_pairs(limited_useful_view)
seq_save_data = {
"data_pairs": data_pairs,
"best_sequence": limited_useful_view,
"max_coverage_rate": limited_useful_view[-1][1]
}
status_manager.set_status("generate_strategy", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
output_label_path = DataLoadUtil.get_label_path(root, scene_name, seq_idx)
with open(output_label_path, 'w') as f:
json.dump(seq_save_data, f)
seq_idx += 1
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", len(init_view_list), len(init_view_list))
def generate_data_pairs(self, useful_view):
data_pairs = []
for next_view_idx in range(1, len(useful_view)):
scanned_views = useful_view[:next_view_idx]
next_view = useful_view[next_view_idx]
data_pairs.append((scanned_views, next_view))
return data_pairs

19
runners/view_generator.py Normal file
View File

@@ -0,0 +1,19 @@
import subprocess
from PytorchBoot.runners.runner import Runner
import PytorchBoot.stereotype as stereotype
@stereotype.runner("view_generator")
class ViewGenerator(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.config_path = config_path
def run(self):
result = subprocess.run(['/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
print()
def create_experiment(self, backup_name=None):
return super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)