first commit
This commit is contained in:
BIN
utils/__pycache__/control.cpython-39.pyc
Normal file
BIN
utils/__pycache__/control.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/data_load.cpython-39.pyc
Normal file
BIN
utils/__pycache__/data_load.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/pose.cpython-39.pyc
Normal file
BIN
utils/__pycache__/pose.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/pts.cpython-39.pyc
Normal file
BIN
utils/__pycache__/pts.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/reconstruction.cpython-39.pyc
Normal file
BIN
utils/__pycache__/reconstruction.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/render.cpython-39.pyc
Normal file
BIN
utils/__pycache__/render.cpython-39.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/vis.cpython-39.pyc
Normal file
BIN
utils/__pycache__/vis.cpython-39.pyc
Normal file
Binary file not shown.
59
utils/control.py
Normal file
59
utils/control.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
import time
|
||||
|
||||
class ControlUtil:
|
||||
|
||||
curr_rotation = 0
|
||||
|
||||
@staticmethod
|
||||
def check_limit(new_cam_to_world):
|
||||
if new_cam_to_world[0,3] < 0 or new_cam_to_world[1,3] > 0:
|
||||
# if new_cam_to_world[0,3] > 0:
|
||||
return False
|
||||
x = abs(new_cam_to_world[0,3])
|
||||
y = abs(new_cam_to_world[1,3])
|
||||
tan_y_x = y/x
|
||||
min_angle = 0 / 180 * np.pi
|
||||
max_angle = 90 / 180 * np.pi
|
||||
if tan_y_x < np.tan(min_angle) or tan_y_x > np.tan(max_angle):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple:
|
||||
if ControlUtil.check_limit(cam_to_world):
|
||||
return 0, cam_to_world
|
||||
else:
|
||||
min_display_table_rot = 180
|
||||
min_new_cam_to_world = None
|
||||
for display_table_rot in np.linspace(0.1,360, 1800):
|
||||
new_world_to_world = ControlUtil.get_z_axis_rot_mat(display_table_rot)
|
||||
new_cam_to_new_world = cam_to_world
|
||||
new_cam_to_world = new_world_to_world @ new_cam_to_new_world
|
||||
|
||||
if ControlUtil.check_limit(new_cam_to_world):
|
||||
if display_table_rot < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world
|
||||
if abs(display_table_rot - 360) < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world
|
||||
|
||||
if min_new_cam_to_world is None:
|
||||
raise ValueError("No valid display table rotation found")
|
||||
|
||||
delta_degree = min_display_table_rot - ControlUtil.curr_rotation
|
||||
ControlUtil.curr_rotation = min_display_table_rot
|
||||
return delta_degree, min_new_cam_to_world
|
||||
|
||||
@staticmethod
|
||||
def get_z_axis_rot_mat(degree):
|
||||
radian = np.radians(degree)
|
||||
return np.array([
|
||||
[np.cos(radian), -np.sin(radian), 0, 0],
|
||||
[np.sin(radian), np.cos(radian), 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
|
391
utils/data_load.py
Normal file
391
utils/data_load.py
Normal file
@@ -0,0 +1,391 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
import cv2
|
||||
import trimesh
|
||||
import torch
|
||||
import OpenEXR
|
||||
import Imath
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
|
||||
class DataLoadUtil:
|
||||
TABLE_POSITION = np.asarray([0, 0, 0.8215])
|
||||
|
||||
@staticmethod
|
||||
def load_exr_image(file_path):
|
||||
exr_file = OpenEXR.InputFile(file_path)
|
||||
header = exr_file.header()
|
||||
dw = header['dataWindow']
|
||||
width = dw.max.x - dw.min.x + 1
|
||||
height = dw.max.y - dw.min.y + 1
|
||||
float_channels = ['R', 'G', 'B']
|
||||
img_data = []
|
||||
for channel in float_channels:
|
||||
channel_data = exr_file.channel(channel)
|
||||
img_data.append(np.frombuffer(channel_data, dtype=np.float16).reshape((height, width)))
|
||||
img = np.stack(img_data, axis=-1)
|
||||
return img
|
||||
|
||||
@staticmethod
|
||||
def get_display_table_info(root, scene_name):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
display_table_info = scene_info["display_table"]
|
||||
return display_table_info
|
||||
|
||||
@staticmethod
|
||||
def get_display_table_top(root, scene_name):
|
||||
display_table_height = DataLoadUtil.get_display_table_info(root, scene_name)[
|
||||
"height"
|
||||
]
|
||||
display_table_top = DataLoadUtil.TABLE_POSITION + np.asarray(
|
||||
[0, 0, display_table_height]
|
||||
)
|
||||
return display_table_top
|
||||
|
||||
@staticmethod
|
||||
def get_path(root, scene_name, frame_idx):
|
||||
path = os.path.join(root, scene_name, f"{frame_idx}")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_num(root, scene_name):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
if not os.path.exists(label_dir):
|
||||
return 0
|
||||
return len(os.listdir(label_dir))
|
||||
|
||||
@staticmethod
|
||||
def get_label_path(root, scene_name, seq_idx):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
if not os.path.exists(label_dir):
|
||||
os.makedirs(label_dir)
|
||||
path = os.path.join(label_dir, f"{seq_idx}.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_scene_seq_length(root, scene_name):
|
||||
camera_params_path = os.path.join(root, scene_name, "camera_params")
|
||||
return len(os.listdir(camera_params_path))
|
||||
|
||||
@staticmethod
|
||||
def load_mesh_at(model_dir, object_name, world_object_pose):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
mesh.apply_transform(world_object_pose)
|
||||
return mesh
|
||||
|
||||
@staticmethod
|
||||
def get_bbox_diag(model_dir, object_name):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
bbox = mesh.bounding_box.extents
|
||||
diagonal_length = np.linalg.norm(bbox)
|
||||
return diagonal_length
|
||||
|
||||
@staticmethod
|
||||
def load_scene_info(root, scene_name):
|
||||
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
|
||||
with open(scene_info_path, "r") as f:
|
||||
scene_info = json.load(f)
|
||||
return scene_info
|
||||
|
||||
@staticmethod
|
||||
def load_target_pts_num_dict(root, scene_name):
|
||||
target_pts_num_path = os.path.join(root, scene_name, "target_pts_num.json")
|
||||
with open(target_pts_num_path, "r") as f:
|
||||
target_pts_num_dict = json.load(f)
|
||||
return target_pts_num_dict
|
||||
|
||||
@staticmethod
|
||||
def load_depth(path, min_depth=0.01, max_depth=5.0, binocular=False):
|
||||
|
||||
def load_depth_from_real_path(real_path, min_depth, max_depth):
|
||||
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
|
||||
depth = depth.astype(np.float32) / 65535.0
|
||||
min_depth = min_depth
|
||||
max_depth = max_depth
|
||||
depth_meters = min_depth + (max_depth - min_depth) * depth
|
||||
return depth_meters
|
||||
|
||||
if binocular:
|
||||
depth_path_L = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
depth_path_R = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
depth_meters_L = load_depth_from_real_path(
|
||||
depth_path_L, min_depth, max_depth
|
||||
)
|
||||
depth_meters_R = load_depth_from_real_path(
|
||||
depth_path_R, min_depth, max_depth
|
||||
)
|
||||
return depth_meters_L, depth_meters_R
|
||||
else:
|
||||
depth_path = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + ".png"
|
||||
)
|
||||
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
|
||||
return depth_meters
|
||||
|
||||
@staticmethod
|
||||
def load_seg(path, binocular=False, left_only=False):
|
||||
if binocular and not left_only:
|
||||
|
||||
def clean_mask(mask_image):
|
||||
green = [0, 255, 0]
|
||||
red = [255, 0, 0]
|
||||
threshold = 2
|
||||
mask_image = np.where(
|
||||
np.abs(mask_image - green) <= threshold, green, mask_image
|
||||
)
|
||||
mask_image = np.where(
|
||||
np.abs(mask_image - red) <= threshold, red, mask_image
|
||||
)
|
||||
return mask_image
|
||||
|
||||
mask_path_L = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
|
||||
mask_path_R = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
|
||||
return mask_image_L, mask_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
mask_path = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
else:
|
||||
mask_path = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + ".png"
|
||||
)
|
||||
mask_image = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED)
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def load_normal(path, binocular=False, left_only=False, file_type="exr"):
|
||||
if binocular and not left_only:
|
||||
normal_path_L = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_L.{file_type}"
|
||||
)
|
||||
normal_image_L = DataLoadUtil.load_exr_image(normal_path_L)
|
||||
|
||||
normal_path_R = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_R.{file_type}"
|
||||
)
|
||||
normal_image_R = DataLoadUtil.load_exr_image(normal_path_R)
|
||||
normalized_normal_image_L = normal_image_L * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R * 2.0 - 1.0
|
||||
return normalized_normal_image_L, normalized_normal_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_L.{file_type}"
|
||||
)
|
||||
else:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f".{file_type}"
|
||||
)
|
||||
normal_image = DataLoadUtil.load_exr_image(normal_path)
|
||||
normalized_normal_image = normal_image * 2.0 - 1.0
|
||||
return normalized_normal_image
|
||||
|
||||
@staticmethod
|
||||
def load_label(path):
|
||||
with open(path, "r") as f:
|
||||
label_data = json.load(f)
|
||||
return label_data
|
||||
|
||||
@staticmethod
|
||||
def load_from_preprocessed_pts(path, file_type="npy"):
|
||||
npy_path = os.path.join(
|
||||
os.path.dirname(path), "pts", os.path.basename(path) + "." + file_type
|
||||
)
|
||||
if file_type == "txt":
|
||||
pts = np.loadtxt(npy_path)
|
||||
else:
|
||||
pts = np.load(npy_path)
|
||||
return pts
|
||||
|
||||
@staticmethod
|
||||
def load_from_preprocessed_nrm(path, file_type="npy"):
|
||||
npy_path = os.path.join(
|
||||
os.path.dirname(path), "nrm", os.path.basename(path) + "." + file_type
|
||||
)
|
||||
if file_type == "txt":
|
||||
nrm = np.loadtxt(npy_path)
|
||||
else:
|
||||
nrm = np.load(npy_path)
|
||||
return nrm
|
||||
|
||||
@staticmethod
|
||||
def cam_pose_transformation(cam_pose_before):
|
||||
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||||
cam_pose_after = cam_pose_before @ offset
|
||||
return cam_pose_after
|
||||
|
||||
@staticmethod
|
||||
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
|
||||
scene_dir = os.path.dirname(path)
|
||||
root_dir = os.path.dirname(scene_dir)
|
||||
scene_name = os.path.basename(scene_dir)
|
||||
camera_params_path = os.path.join(
|
||||
os.path.dirname(path), "camera_params", os.path.basename(path) + ".json"
|
||||
)
|
||||
with open(camera_params_path, "r") as f:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
|
||||
if display_table_as_world_space_origin:
|
||||
world_to_display_table = np.eye(4)
|
||||
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
cam_to_world = np.dot(world_to_display_table, cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
cam_info = {
|
||||
"cam_to_world": cam_to_world,
|
||||
"cam_intrinsic": cam_intrinsic,
|
||||
"far_plane": label_data["far_plane"],
|
||||
"near_plane": label_data["near_plane"],
|
||||
}
|
||||
if binocular:
|
||||
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
|
||||
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
|
||||
cam_to_world_O = np.asarray(label_data["extrinsic_cam_object"])
|
||||
cam_to_world_O = DataLoadUtil.cam_pose_transformation(cam_to_world_O)
|
||||
if display_table_as_world_space_origin:
|
||||
cam_to_world_O = np.dot(world_to_display_table, cam_to_world_O)
|
||||
cam_to_world_R = np.dot(world_to_display_table, cam_to_world_R)
|
||||
cam_info["cam_to_world_O"] = cam_to_world_O
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
return cam_info
|
||||
|
||||
@staticmethod
|
||||
def get_real_cam_O_from_cam_L(
|
||||
cam_L, cam_O_to_cam_L, scene_path, display_table_as_world_space_origin=True
|
||||
):
|
||||
root_dir = os.path.dirname(scene_path)
|
||||
scene_name = os.path.basename(scene_path)
|
||||
if isinstance(cam_L, torch.Tensor):
|
||||
cam_L = cam_L.cpu().numpy()
|
||||
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
|
||||
if display_table_as_world_space_origin:
|
||||
display_table_to_world = np.eye(4)
|
||||
display_table_to_world[:3, 3] = DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
nO_to_world_pose = np.dot(display_table_to_world, nO_to_display_table_pose)
|
||||
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
|
||||
return nO_to_world_pose
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud(
|
||||
depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255), require_full_points=False
|
||||
):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
mask = mask.reshape(-1, 4)
|
||||
|
||||
target_mask = (mask == target_mask_label).all(axis=-1)
|
||||
|
||||
target_points_camera = points_camera[target_mask]
|
||||
target_points_camera_aug = np.concatenate(
|
||||
[target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1
|
||||
)
|
||||
|
||||
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
|
||||
data = {
|
||||
"points_world": target_points_world,
|
||||
"points_camera": target_points_camera,
|
||||
}
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate(
|
||||
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
|
||||
)
|
||||
|
||||
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
return {"points_world": points_world, "points_camera": points_camera}
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud_world_from_path(
|
||||
path,
|
||||
binocular=False,
|
||||
random_downsample_N=65536,
|
||||
voxel_size=0.005,
|
||||
target_mask_label=(0, 255, 0, 255),
|
||||
display_table_mask_label=(0, 0, 255, 255),
|
||||
get_display_table_pts=False,
|
||||
require_normal=False,
|
||||
):
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||
if binocular:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"], cam_info["far_plane"], binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_target_point_cloud(
|
||||
depth_L,
|
||||
cam_info["cam_intrinsic"],
|
||||
cam_info["cam_to_world"],
|
||||
mask_L,
|
||||
target_mask_label,
|
||||
)["points_world"]
|
||||
point_cloud_R = DataLoadUtil.get_target_point_cloud(
|
||||
depth_R,
|
||||
cam_info["cam_intrinsic"],
|
||||
cam_info["cam_to_world_R"],
|
||||
mask_R,
|
||||
target_mask_label,
|
||||
)["points_world"]
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_L, random_downsample_N
|
||||
)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_R, random_downsample_N
|
||||
)
|
||||
overlap_points = PtsUtil.get_overlapping_points(
|
||||
point_cloud_L, point_cloud_R, voxel_size
|
||||
)
|
||||
return overlap_points
|
||||
else:
|
||||
depth = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"], cam_info["far_plane"]
|
||||
)
|
||||
mask = DataLoadUtil.load_seg(path)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud(
|
||||
depth, cam_info["cam_intrinsic"], cam_info["cam_to_world"], mask
|
||||
)["points_world"]
|
||||
return point_cloud
|
||||
|
||||
@staticmethod
|
||||
def load_points_normals(root, scene_name, display_table_as_world_space_origin=True):
|
||||
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
|
||||
points_normals = np.loadtxt(points_path)
|
||||
if display_table_as_world_space_origin:
|
||||
points_normals[:, :3] = points_normals[
|
||||
:, :3
|
||||
] - DataLoadUtil.get_display_table_top(root, scene_name)
|
||||
return points_normals
|
253
utils/pose.py
Normal file
253
utils/pose.py
Normal file
@@ -0,0 +1,253 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class PoseUtil:
|
||||
ROTATION = 1
|
||||
TRANSLATION = 2
|
||||
SCALE = 3
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
|
||||
if isinstance(trans_m_min, list):
|
||||
x_min, y_min, z_min = trans_m_min
|
||||
x_max, y_max, z_max = trans_m_max
|
||||
else:
|
||||
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
|
||||
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
|
||||
|
||||
x = np.random.uniform(x_min, x_max)
|
||||
y = np.random.uniform(y_min, y_max)
|
||||
z = np.random.uniform(z_min, z_max)
|
||||
translation = np.array([x, y, z])
|
||||
if trans_unit == "cm":
|
||||
translation = translation / 100
|
||||
if debug:
|
||||
print("uniform translation:", translation)
|
||||
return translation
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
|
||||
axis = np.random.randn(3)
|
||||
axis /= np.linalg.norm(axis)
|
||||
theta = np.random.uniform(
|
||||
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
|
||||
)
|
||||
|
||||
K = np.array(
|
||||
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
|
||||
)
|
||||
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
|
||||
if debug:
|
||||
print("uniform rotation:", theta * 180 / np.pi)
|
||||
return R
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_pose(
|
||||
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
|
||||
):
|
||||
translation = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
pose = np.eye(4)
|
||||
pose[:3, :3] = rotation
|
||||
pose[:3, 3] = translation
|
||||
return pose
|
||||
|
||||
@staticmethod
|
||||
def get_n_uniform_pose(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min=0,
|
||||
rot_max=180,
|
||||
n=1,
|
||||
trans_unit="cm",
|
||||
fix=None,
|
||||
contain_canonical=True,
|
||||
debug=False,
|
||||
):
|
||||
if fix == PoseUtil.ROTATION:
|
||||
translations = np.zeros((n, 3))
|
||||
for i in range(n):
|
||||
translations[i] = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
if contain_canonical:
|
||||
translations[0] = np.zeros(3)
|
||||
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
elif fix == PoseUtil.TRANSLATION:
|
||||
rotations = np.zeros((n, 3, 3))
|
||||
for i in range(n):
|
||||
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
if contain_canonical:
|
||||
rotations[0] = np.eye(3)
|
||||
translations = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
else:
|
||||
translations = np.zeros((n, 3))
|
||||
rotations = np.zeros((n, 3, 3))
|
||||
for i in range(n):
|
||||
translations[i] = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
for i in range(n):
|
||||
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
if contain_canonical:
|
||||
translations[0] = np.zeros(3)
|
||||
rotations[0] = np.eye(3)
|
||||
|
||||
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
|
||||
pose[:, :3, :3] = rotations
|
||||
pose[:, :3, 3] = translations
|
||||
|
||||
return pose
|
||||
|
||||
@staticmethod
|
||||
def get_n_uniform_pose_batch(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min=0,
|
||||
rot_max=180,
|
||||
n=1,
|
||||
batch_size=1,
|
||||
trans_unit="cm",
|
||||
fix=None,
|
||||
contain_canonical=False,
|
||||
debug=False,
|
||||
):
|
||||
|
||||
batch_poses = []
|
||||
for i in range(batch_size):
|
||||
pose = PoseUtil.get_n_uniform_pose(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min,
|
||||
rot_max,
|
||||
n,
|
||||
trans_unit,
|
||||
fix,
|
||||
contain_canonical,
|
||||
debug,
|
||||
)
|
||||
batch_poses.append(pose)
|
||||
pose_batch = np.stack(batch_poses, axis=0)
|
||||
return pose_batch
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_scale(scale_min, scale_max, debug=False):
|
||||
if isinstance(scale_min, list):
|
||||
x_min, y_min, z_min = scale_min
|
||||
x_max, y_max, z_max = scale_max
|
||||
else:
|
||||
x_min, y_min, z_min = scale_min, scale_min, scale_min
|
||||
x_max, y_max, z_max = scale_max, scale_max, scale_max
|
||||
|
||||
x = np.random.uniform(x_min, x_max)
|
||||
y = np.random.uniform(y_min, y_max)
|
||||
z = np.random.uniform(z_min, z_max)
|
||||
scale = np.array([x, y, z])
|
||||
if debug:
|
||||
print("uniform scale:", scale)
|
||||
return scale
|
||||
|
||||
@staticmethod
|
||||
def normalize_rotation(rotation, rotation_mode):
|
||||
if rotation_mode == "quat_wxyz" or rotation_mode == "quat_xyzw":
|
||||
rotation /= torch.norm(rotation, dim=-1, keepdim=True)
|
||||
elif rotation_mode == "rot_matrix":
|
||||
rot_matrix = PoseUtil.rotation_6d_to_matrix_tensor_batch(rotation)
|
||||
rotation[:, :3] = rot_matrix[:, 0, :]
|
||||
rotation[:, 3:6] = rot_matrix[:, 1, :]
|
||||
elif rotation_mode == "euler_xyz_sx_cx":
|
||||
rot_sin_theta = rotation[:, :3]
|
||||
rot_cos_theta = rotation[:, 3:6]
|
||||
theta = torch.atan2(rot_sin_theta, rot_cos_theta)
|
||||
rotation[:, :3] = torch.sin(theta)
|
||||
rotation[:, 3:6] = torch.cos(theta)
|
||||
elif rotation_mode == "euler_xyz":
|
||||
pass
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return rotation
|
||||
|
||||
@staticmethod
|
||||
def get_pose_dim(rot_mode):
|
||||
assert rot_mode in [
|
||||
"quat_wxyz",
|
||||
"quat_xyzw",
|
||||
"euler_xyz",
|
||||
"euler_xyz_sx_cx",
|
||||
"rot_matrix",
|
||||
], f"the rotation mode {rot_mode} is not supported!"
|
||||
|
||||
if rot_mode == "quat_wxyz" or rot_mode == "quat_xyzw":
|
||||
pose_dim = 7
|
||||
elif rot_mode == "euler_xyz":
|
||||
pose_dim = 6
|
||||
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
|
||||
pose_dim = 9
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return pose_dim
|
||||
|
||||
@staticmethod
|
||||
def rotation_6d_to_matrix_tensor_batch(d6: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
a1, a2 = d6[..., :3], d6[..., 3:]
|
||||
b1 = F.normalize(a1, dim=-1)
|
||||
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
||||
b2 = F.normalize(b2, dim=-1)
|
||||
b3 = torch.cross(b1, b2, dim=-1)
|
||||
return torch.stack((b1, b2, b3), dim=-2)
|
||||
|
||||
@staticmethod
|
||||
def matrix_to_rotation_6d_tensor_batch(matrix: torch.Tensor) -> torch.Tensor:
|
||||
batch_dim = matrix.size()[:-2]
|
||||
return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
|
||||
|
||||
@staticmethod
|
||||
def rotation_6d_to_matrix_numpy(d6):
|
||||
a1, a2 = d6[:3], d6[3:]
|
||||
b1 = a1 / np.linalg.norm(a1)
|
||||
b2 = a2 - np.dot(b1, a2) * b1
|
||||
b2 = b2 / np.linalg.norm(b2)
|
||||
b3 = np.cross(b1, b2)
|
||||
return np.stack((b1, b2, b3), axis=-2)
|
||||
|
||||
@staticmethod
|
||||
def matrix_to_rotation_6d_numpy(matrix):
|
||||
return np.copy(matrix[:2, :]).reshape((6,))
|
||||
|
||||
@staticmethod
|
||||
def rotation_angle_distance(R1, R2):
|
||||
R = torch.matmul(R1, R2.transpose(1, 2))
|
||||
trace = torch.diagonal(R, dim1=1, dim2=2).sum(-1)
|
||||
angle = torch.acos(torch.clamp((trace - 1) / 2, -1.0, 1.0))/torch.pi*180
|
||||
return angle
|
||||
|
||||
|
||||
""" ------------ Debug ------------ """
|
||||
|
||||
if __name__ == "__main__":
|
||||
for _ in range(1):
|
||||
PoseUtil.get_uniform_pose(
|
||||
trans_min=[-25, -25, 10],
|
||||
trans_max=[25, 25, 60],
|
||||
rot_min=0,
|
||||
rot_max=10,
|
||||
debug=True,
|
||||
)
|
||||
PoseUtil.get_uniform_scale(scale_min=0.25, scale_max=0.30, debug=True)
|
||||
PoseUtil.get_n_uniform_pose_batch(
|
||||
trans_min=[-25, -25, 10],
|
||||
trans_max=[25, 25, 60],
|
||||
rot_min=0,
|
||||
rot_max=10,
|
||||
batch_size=2,
|
||||
n=2,
|
||||
fix=PoseUtil.TRANSLATION,
|
||||
debug=True,
|
||||
)
|
117
utils/pts.py
Normal file
117
utils/pts.py
Normal file
@@ -0,0 +1,117 @@
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
|
||||
class PtsUtil:
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005, require_idx=False):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
if require_idx:
|
||||
_, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, idx_unique
|
||||
else:
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels[0]*voxel_size
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud_random(point_cloud, voxel_size=0.005, require_idx=False):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
if require_idx:
|
||||
return downsampled_points, inverse
|
||||
return downsampled_points
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
if point_cloud.shape[0] == 0:
|
||||
if require_idx:
|
||||
return point_cloud, np.array([])
|
||||
return point_cloud
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=True)
|
||||
if require_idx:
|
||||
return point_cloud[idx], idx
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def fps_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
N = point_cloud.shape[0]
|
||||
mask = np.zeros(N, dtype=bool)
|
||||
|
||||
sampled_indices = np.zeros(num_points, dtype=int)
|
||||
sampled_indices[0] = np.random.randint(0, N)
|
||||
distances = np.linalg.norm(point_cloud - point_cloud[sampled_indices[0]], axis=1)
|
||||
for i in range(1, num_points):
|
||||
farthest_index = np.argmax(distances)
|
||||
sampled_indices[i] = farthest_index
|
||||
mask[farthest_index] = True
|
||||
|
||||
new_distances = np.linalg.norm(point_cloud - point_cloud[farthest_index], axis=1)
|
||||
distances = np.minimum(distances, new_distances)
|
||||
|
||||
sampled_points = point_cloud[sampled_indices]
|
||||
if require_idx:
|
||||
return sampled_points, sampled_indices
|
||||
return sampled_points
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
||||
idx = torch.randint(0, len(point_cloud), (num_points,))
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def voxelize_points(points, voxel_size):
|
||||
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def transform_point_cloud(points, pose_mat):
|
||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||
points_h = np.dot(pose_mat, points_h.T).T
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False):
|
||||
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
voxels_R, _ = PtsUtil.voxelize_points(point_cloud_R, voxel_size)
|
||||
|
||||
voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3)
|
||||
voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3)
|
||||
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
|
||||
mask_L = np.isin(
|
||||
indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0]
|
||||
)
|
||||
overlapping_points = point_cloud_L[mask_L]
|
||||
if require_idx:
|
||||
return overlapping_points, mask_L
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, normals, cam_pose, theta_limit=45, z_range=(0.2, 0.45)):
|
||||
|
||||
""" filter with normal """
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, np.array([0, 0, 1]))
|
||||
theta = np.arccos(cos_theta) * 180 / np.pi
|
||||
idx = theta < theta_limit
|
||||
filtered_sampled_points = points[idx]
|
||||
filtered_normals = normals[idx]
|
||||
|
||||
""" filter with z range """
|
||||
points_cam = PtsUtil.transform_point_cloud(filtered_sampled_points, np.linalg.inv(cam_pose))
|
||||
idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1])
|
||||
z_filtered_points = filtered_sampled_points[idx]
|
||||
z_filtered_normals = filtered_normals[idx]
|
||||
return z_filtered_points[:, :3], z_filtered_normals
|
||||
|
||||
@staticmethod
|
||||
def point_to_hash(point, voxel_size):
|
||||
return tuple(np.floor(point / voxel_size).astype(int))
|
||||
|
267
utils/reconstruction.py
Normal file
267
utils/reconstruction.py
Normal file
@@ -0,0 +1,267 @@
|
||||
import numpy as np
|
||||
from scipy.spatial import cKDTree
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(target_point_cloud)
|
||||
covered_points_num = np.sum(distances < threshold*2)
|
||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||
return coverage_rate, covered_points_num
|
||||
|
||||
@staticmethod
|
||||
def compute_coverage_rate_with_normal(target_point_cloud, combined_point_cloud, target_normal, combined_normal, threshold=0.01, normal_threshold=0.1):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, indices = kdtree.query(target_point_cloud)
|
||||
is_covered_by_distance = distances < threshold*2
|
||||
normal_dots = np.einsum('ij,ij->i', target_normal, combined_normal[indices])
|
||||
is_covered_by_normal = normal_dots > normal_threshold
|
||||
|
||||
pts_nrm_target = np.hstack([target_point_cloud, target_normal])
|
||||
np.savetxt("pts_nrm_target.txt", pts_nrm_target)
|
||||
pts_nrm_combined = np.hstack([combined_point_cloud, combined_normal])
|
||||
np.savetxt("pts_nrm_combined.txt", pts_nrm_combined)
|
||||
import ipdb; ipdb.set_trace()
|
||||
covered_points_num = np.sum(is_covered_by_distance & is_covered_by_normal)
|
||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||
|
||||
return coverage_rate, covered_points_num
|
||||
|
||||
|
||||
@staticmethod
|
||||
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01, require_new_added_pts_num=False):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(new_point_cloud)
|
||||
overlapping_points_num = np.sum(distances < voxel_size*2)
|
||||
cm = 0.01
|
||||
voxel_size_cm = voxel_size / cm
|
||||
overlap_area = overlapping_points_num * voxel_size_cm * voxel_size_cm
|
||||
if require_new_added_pts_num:
|
||||
return overlap_area > overlap_area_threshold, len(new_point_cloud)-np.sum(distances < voxel_size*1.2)
|
||||
return overlap_area > overlap_area_threshold
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_new_added_points(old_combined_pts, new_pts, threshold=0.005):
|
||||
if old_combined_pts.size == 0:
|
||||
return new_pts
|
||||
if new_pts.size == 0:
|
||||
return np.array([])
|
||||
|
||||
tree = cKDTree(old_combined_pts)
|
||||
distances, _ = tree.query(new_pts, k=1)
|
||||
new_added_points = new_pts[distances > threshold]
|
||||
return new_added_points
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, overlap_area_threshold=25, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud, threshold)
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
current_covered_num = new_covered_num
|
||||
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
drop_output_ratio = 0.4
|
||||
|
||||
import time
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
best_covered_num = 0
|
||||
|
||||
for view_index in remaining_views:
|
||||
if np.random.rand() < drop_output_ratio:
|
||||
continue
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
if not ReconstructionUtil.check_overlap(point_cloud_list[view_index], combined_point_cloud, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=threshold):
|
||||
continue
|
||||
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_covered_num = new_covered_num
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||
break
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Best cover pts: {best_covered_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage+best_coverage_increase}, Best coverage increase: {best_coverage_increase}, Max Real coverage: {max_real_rec_pts_coverage}")
|
||||
current_covered_num = best_covered_num
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
cnt_processed_view += 1
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||
|
||||
view_sequence.append((best_view, current_coverage))
|
||||
|
||||
else:
|
||||
break
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_normal(target_point_cloud, target_normal, point_cloud_list, normal_list, scan_points_indices_list, threshold=0.01, overlap_area_threshold=25, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
combined_normal = normal_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
max_rec_nrm = np.vstack(normal_list)
|
||||
downsampled_max_rec_pts, idx = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold, require_idx=True)
|
||||
downsampled_max_rec_nrm = max_rec_nrm[idx]
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
try:
|
||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate_with_normal(target_point_cloud, downsampled_max_rec_pts, target_normal, downsampled_max_rec_nrm, threshold)
|
||||
except:
|
||||
import ipdb; ipdb.set_trace()
|
||||
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate_with_normal(downsampled_max_rec_pts, combined_point_cloud, downsampled_max_rec_nrm, combined_normal, threshold)
|
||||
current_coverage = new_coverage
|
||||
current_covered_num = new_covered_num
|
||||
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
best_combined_normal = None
|
||||
best_covered_num = 0
|
||||
|
||||
for view_index in remaining_views:
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
if not ReconstructionUtil.check_overlap(point_cloud_list[view_index], combined_point_cloud, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=threshold):
|
||||
continue
|
||||
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_combined_normal = np.vstack([combined_normal, normal_list[view_index]])
|
||||
new_downsampled_combined_point_cloud, idx = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold, require_idx=True)
|
||||
new_downsampled_combined_normal = new_combined_normal[idx]
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate_with_normal(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, downsampled_max_rec_nrm, new_downsampled_combined_normal, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_covered_num = new_covered_num
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
best_combined_normal = new_downsampled_combined_normal
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||
break
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Best cover pts: {best_covered_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage}, Best coverage increase: {best_coverage_increase}, Max Real coverage: {max_real_rec_pts_coverage}")
|
||||
current_covered_num = best_covered_num
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
combined_normal = best_combined_normal
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
cnt_processed_view += 1
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||
|
||||
view_sequence.append((best_view, current_coverage))
|
||||
|
||||
else:
|
||||
break
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
|
||||
@staticmethod
|
||||
def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 500, max_attempts = 1000):
|
||||
points = []
|
||||
attempts = 0
|
||||
while len(points) < max_points_num and attempts < max_attempts:
|
||||
angle = np.random.uniform(0, 2 * np.pi)
|
||||
r = np.random.uniform(0, display_table_radius)
|
||||
x = r * np.cos(angle)
|
||||
y = r * np.sin(angle)
|
||||
z = display_table_top
|
||||
new_point = (x, y, z)
|
||||
if all(np.linalg.norm(np.array(new_point) - np.array(existing_point)) >= min_distance for existing_point in points):
|
||||
points.append(new_point)
|
||||
attempts += 1
|
||||
return points
|
||||
|
||||
@staticmethod
|
||||
def check_scan_points_overlap(history_indices, indices2, threshold=5):
|
||||
for indices1 in history_indices:
|
||||
if len(set(indices1).intersection(set(indices2))) >= threshold:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
136
utils/render.py
Normal file
136
utils/render.py
Normal file
@@ -0,0 +1,136 @@
|
||||
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import subprocess
|
||||
import tempfile
|
||||
import shutil
|
||||
import numpy as np
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from utils.pts import PtsUtil
|
||||
class RenderUtil:
|
||||
target_mask_label = (0, 255, 0)
|
||||
display_table_mask_label = (0, 0, 255)
|
||||
random_downsample_N = 32768
|
||||
min_z = 0.2
|
||||
max_z = 0.5
|
||||
|
||||
@staticmethod
|
||||
def get_world_points_and_normal(depth, mask, normal, cam_intrinsic, cam_extrinsic, random_downsample_N):
|
||||
z = depth[mask]
|
||||
i, j = np.nonzero(mask)
|
||||
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
normal_camera = normal[mask].reshape(-1, 3)
|
||||
sampled_target_points, idx = PtsUtil.random_downsample_point_cloud(
|
||||
points_camera, random_downsample_N, require_idx=True
|
||||
)
|
||||
if len(sampled_target_points) == 0:
|
||||
return np.zeros((0, 3)), np.zeros((0, 3))
|
||||
sampled_normal_camera = normal_camera[idx]
|
||||
|
||||
points_camera_aug = np.concatenate((sampled_target_points, np.ones((sampled_target_points.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world, sampled_normal_camera
|
||||
|
||||
@staticmethod
|
||||
def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic, random_downsample_N):
|
||||
z = depth[mask]
|
||||
i, j = np.nonzero(mask)
|
||||
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
sampled_target_points = PtsUtil.random_downsample_point_cloud(
|
||||
points_camera, random_downsample_N
|
||||
)
|
||||
points_camera_aug = np.concatenate((sampled_target_points, np.ones((sampled_target_points.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world
|
||||
|
||||
@staticmethod
|
||||
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
||||
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
|
||||
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
||||
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
||||
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
||||
pixel_y = points_image_homogeneous[:, 1].astype(int)
|
||||
h, w = mask.shape[:2]
|
||||
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
||||
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
||||
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
|
||||
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||
return selected_points_indices
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
#import ipdb; ipdb.set_trace()
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
params = {
|
||||
"cam_pose": nO_to_world_pose.tolist(),
|
||||
"scene_path": scene_path
|
||||
}
|
||||
scene_info_path = os.path.join(scene_path, "scene_info.json")
|
||||
shutil.copy(scene_info_path, os.path.join(temp_dir, "scene_info.json"))
|
||||
params_data_path = os.path.join(temp_dir, "params.json")
|
||||
with open(params_data_path, 'w') as f:
|
||||
json.dump(params, f)
|
||||
result = subprocess.run([
|
||||
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
#print(result)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"],
|
||||
cam_info["far_plane"],
|
||||
binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
||||
''' target points '''
|
||||
mask_img_L = mask_L
|
||||
mask_img_R = mask_R
|
||||
|
||||
target_mask_img_L = (mask_L == RenderUtil.target_mask_label).all(axis=-1)
|
||||
target_mask_img_R = (mask_R == RenderUtil.target_mask_label).all(axis=-1)
|
||||
|
||||
|
||||
sampled_target_points_L, sampled_target_normal_L = RenderUtil.get_world_points_and_normal(depth_L,target_mask_img_L,normal_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"], RenderUtil.random_downsample_N)
|
||||
sampled_target_points_R = RenderUtil.get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"], RenderUtil.random_downsample_N )
|
||||
|
||||
|
||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||
if has_points:
|
||||
target_points, overlap_idx = PtsUtil.get_overlapping_points(
|
||||
sampled_target_points_L, sampled_target_points_R, voxel_threshold, require_idx=True
|
||||
)
|
||||
sampled_target_normal_L = sampled_target_normal_L[overlap_idx]
|
||||
|
||||
if has_points:
|
||||
has_points = target_points.shape[0] > 0
|
||||
|
||||
if has_points:
|
||||
target_points, target_normals = PtsUtil.filter_points(
|
||||
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(RenderUtil.min_z, RenderUtil.max_z)
|
||||
)
|
||||
|
||||
|
||||
scan_points_indices_L = RenderUtil.get_scan_points_indices(scan_points, mask_img_L, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = RenderUtil.get_scan_points_indices(scan_points, mask_img_R, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
target_normals = np.zeros((0, 3))
|
||||
#import ipdb; ipdb.set_trace()
|
||||
return target_points, target_normals, scan_points_indices
|
208
utils/vis.py
Normal file
208
utils/vis.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
import os
|
||||
import trimesh
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.pose import PoseUtil
|
||||
|
||||
class visualizeUtil:
|
||||
|
||||
@staticmethod
|
||||
def save_all_cam_pos_and_cam_axis(root, scene, output_dir):
|
||||
length = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
all_cam_pos = []
|
||||
all_cam_axis = []
|
||||
for i in range(length):
|
||||
path = DataLoadUtil.get_path(root, scene, i)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
cam_pose = cam_info["cam_to_world"]
|
||||
cam_pos = cam_pose[:3, 3]
|
||||
cam_axis = cam_pose[:3, 2]
|
||||
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
|
||||
all_cam_pos.append(cam_pos)
|
||||
all_cam_axis.append(sample_points)
|
||||
|
||||
all_cam_pos = np.array(all_cam_pos)
|
||||
all_cam_axis = np.array(all_cam_axis).reshape(-1, 3)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_pos.txt"), all_cam_pos)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_axis.txt"), all_cam_axis)
|
||||
|
||||
@staticmethod
|
||||
def get_cam_pose_and_cam_axis(cam_pose, is_6d_pose):
|
||||
if is_6d_pose:
|
||||
matrix_cam_pose = np.eye(4)
|
||||
matrix_cam_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(cam_pose[:6])
|
||||
matrix_cam_pose[:3, 3] = cam_pose[6:]
|
||||
else:
|
||||
matrix_cam_pose = cam_pose
|
||||
cam_pos = matrix_cam_pose[:3, 3]
|
||||
cam_axis = matrix_cam_pose[:3, 2]
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
return cam_pos, sample_points
|
||||
|
||||
@staticmethod
|
||||
def save_all_combined_pts(root, scene, output_dir):
|
||||
length = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
all_combined_pts = []
|
||||
for i in range(length):
|
||||
path = DataLoadUtil.get_path(root, scene, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
all_combined_pts.append(pts)
|
||||
all_combined_pts = np.vstack(all_combined_pts)
|
||||
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.001)
|
||||
np.savetxt(os.path.join(output_dir, "all_combined_pts.txt"), downsampled_all_pts)
|
||||
|
||||
@staticmethod
|
||||
def save_seq_cam_pos_and_cam_axis(root, scene, frame_idx_list, output_dir):
|
||||
all_cam_pos = []
|
||||
all_cam_axis = []
|
||||
for i in frame_idx_list:
|
||||
path = DataLoadUtil.get_path(root, scene, i)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
cam_pose = cam_info["cam_to_world"]
|
||||
cam_pos = cam_pose[:3, 3]
|
||||
cam_axis = cam_pose[:3, 2]
|
||||
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
|
||||
all_cam_pos.append(cam_pos)
|
||||
all_cam_axis.append(sample_points)
|
||||
|
||||
all_cam_pos = np.array(all_cam_pos)
|
||||
all_cam_axis = np.array(all_cam_axis).reshape(-1, 3)
|
||||
np.savetxt(os.path.join(output_dir, "seq_cam_pos.txt"), all_cam_pos)
|
||||
np.savetxt(os.path.join(output_dir, "seq_cam_axis.txt"), all_cam_axis)
|
||||
|
||||
@staticmethod
|
||||
def save_seq_combined_pts(root, scene, frame_idx_list, output_dir):
|
||||
all_combined_pts = []
|
||||
for i in frame_idx_list:
|
||||
path = DataLoadUtil.get_path(root, scene, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
all_combined_pts.append(pts)
|
||||
all_combined_pts = np.vstack(all_combined_pts)
|
||||
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.001)
|
||||
np.savetxt(os.path.join(output_dir, "seq_combined_pts.txt"), downsampled_all_pts)
|
||||
|
||||
@staticmethod
|
||||
def save_target_mesh_at_world_space(
|
||||
root, model_dir, scene_name, display_table_as_world_space_origin=True
|
||||
):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
if display_table_as_world_space_origin:
|
||||
location = transformation["location"] - DataLoadUtil.get_display_table_top(
|
||||
root, scene_name
|
||||
)
|
||||
else:
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
|
||||
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
|
||||
mesh_dir = os.path.join(root, scene_name, "mesh")
|
||||
if not os.path.exists(mesh_dir):
|
||||
os.makedirs(mesh_dir)
|
||||
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def save_points_and_normals(root, scene, frame_idx, output_dir, binocular=False):
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
path = DataLoadUtil.get_path(root, scene, frame_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular, display_table_as_world_space_origin=False)
|
||||
depth = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"],
|
||||
cam_info["far_plane"],
|
||||
binocular=binocular,
|
||||
)
|
||||
if isinstance(depth, tuple):
|
||||
depth = depth[0]
|
||||
|
||||
mask = DataLoadUtil.load_seg(path, binocular=binocular, left_only=True)
|
||||
normal = DataLoadUtil.load_normal(path, binocular=binocular, left_only=True)
|
||||
''' target points '''
|
||||
if mask is None:
|
||||
target_mask_img = np.ones_like(depth, dtype=bool)
|
||||
else:
|
||||
target_mask_img = (mask == target_mask_label).all(axis=-1)
|
||||
cam_intrinsic = cam_info["cam_intrinsic"]
|
||||
z = depth[target_mask_img]
|
||||
i, j = np.nonzero(target_mask_img)
|
||||
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
random_downsample_N = 1000
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
normal_camera = normal[target_mask_img].reshape(-1, 3)
|
||||
sampled_target_points, idx = PtsUtil.random_downsample_point_cloud(
|
||||
points_camera, random_downsample_N, require_idx=True
|
||||
)
|
||||
if len(sampled_target_points) == 0:
|
||||
print("No target points")
|
||||
|
||||
|
||||
sampled_normal_camera = normal_camera[idx]
|
||||
sampled_visualized_normal = []
|
||||
sampled_normal_camera[:, 2] = -sampled_normal_camera[:, 2]
|
||||
sampled_normal_camera[:, 1] = -sampled_normal_camera[:, 1]
|
||||
num_samples = 10
|
||||
for i in range(len(sampled_target_points)):
|
||||
sampled_visualized_normal.append([sampled_target_points[i] + 0.02*t * sampled_normal_camera[i] for t in range(num_samples)])
|
||||
|
||||
sampled_visualized_normal = np.array(sampled_visualized_normal).reshape(-1, 3)
|
||||
np.savetxt(os.path.join(output_dir, "target_pts.txt"), sampled_target_points)
|
||||
np.savetxt(os.path.join(output_dir, "target_normal.txt"), sampled_visualized_normal)
|
||||
|
||||
@staticmethod
|
||||
def save_pts_nrm(root, scene, frame_idx, output_dir, binocular=False):
|
||||
path = DataLoadUtil.get_path(root, scene, frame_idx)
|
||||
pts_world = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||
nrm_camera = DataLoadUtil.load_from_preprocessed_nrm(path, "npy")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||
cam_to_world = cam_info["cam_to_world"]
|
||||
nrm_world = nrm_camera @ cam_to_world[:3, :3].T
|
||||
visualized_nrm = []
|
||||
num_samples = 10
|
||||
for i in range(len(pts_world)):
|
||||
for t in range(num_samples):
|
||||
visualized_nrm.append(pts_world[i] - 0.02 * t * nrm_world[i])
|
||||
|
||||
visualized_nrm = np.array(visualized_nrm)
|
||||
np.savetxt(os.path.join(output_dir, "nrm.txt"), visualized_nrm)
|
||||
np.savetxt(os.path.join(output_dir, "pts.txt"), pts_world)
|
||||
|
||||
# ------ Debug ------
|
||||
|
||||
if __name__ == "__main__":
|
||||
root = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\temp"
|
||||
model_dir = r"H:\\AI\\Datasets\\scaled_object_box_meshes"
|
||||
scene = "box"
|
||||
output_dir = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test"
|
||||
|
||||
#visualizeUtil.save_all_cam_pos_and_cam_axis(root, scene, output_dir)
|
||||
# visualizeUtil.save_all_combined_pts(root, scene, output_dir)
|
||||
# visualizeUtil.save_seq_combined_pts(root, scene, [0, 121, 286, 175, 111,366,45,230,232,225,255,17,199,78,60], output_dir)
|
||||
# visualizeUtil.save_seq_cam_pos_and_cam_axis(root, scene, [0, 121, 286, 175, 111,366,45,230,232,225,255,17,199,78,60], output_dir)
|
||||
# visualizeUtil.save_target_mesh_at_world_space(root, model_dir, scene)
|
||||
#visualizeUtil.save_points_and_normals(root, scene,"10", output_dir, binocular=True)
|
||||
visualizeUtil.save_pts_nrm(root, scene, "116", output_dir, binocular=True)
|
Reference in New Issue
Block a user